Skip to main content
Log in

Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Recently, it has been found that “closed” nanopores with connected edges lying in neighboring layers can be formed in films consisting of one-to-five-layer graphene flakes irradiated by electrons or heavy ions. In the latter case, a significant change in the transport properties of such modified films from the semimetallic to semiconductor behavior is observed. However, the complete understanding of the mechanism of this transition has not been achieved. A mechanism of such behavior proposed in this work is based on the formation of several graphene layers topologically connected by several nearly located closed nanopores. In this case, the pronounced curvature of graphene layers disturbs the semimetallic character of the spectrum in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. He, A. W. Robertson, C. Gong, C. S. Allen, Q. Xu, H. Zandbergen, J. C. Grossman, A. I. Kirkland, and J. H. Warner, Nanoscale 7, 11602 (2015).

    Article  ADS  Google Scholar 

  2. H. J. Park, G. H. Ryu, and Z. Lee, Appl. Microsc. 45, 107 (2015).

    Article  Google Scholar 

  3. D. Zhan, L. Liu, Y. N. Xu, Z. H. Ni, J. X. Yan, C. Zhao, and Z. X. Shen, Sci. Rep. 1, 12 (2011).

    Article  ADS  Google Scholar 

  4. N. A. Nebogatikova, I. V. Antonova, S. V. Erohin, D. G. Kvashnin, A. Olejniczak, V. A. Volodin, A. V. Skuratov, A. V. Krasheninnikov, P. B. Sorokin, and L. A. Chernozatonskii, Nanoscale 10, 14499 (2018).

    Article  Google Scholar 

  5. X. Xu, C. Guan, L. Xu, Y. H. Tan, D. Zhang, and Y. Wang, ACS Nano 14, 937 (2020).

    Article  Google Scholar 

  6. L. A. Chernozatonskii, V. A. Demin, and A. A. Artyukh, JETP Lett. 99, 309 (2014).

    Article  ADS  Google Scholar 

  7. D. G. Kvashnin, P. Vancsó, L. Y. Antipina, G. I. Márk, L. P. Biró, P. B. Sorokin, and L. A. Chernozatonskii, Nano Res. 8, 1250 (2015).

    Article  Google Scholar 

  8. L. A. Chernozatonskii, V. A. Demin, and P. Lambin, Phys. Chem. Chem. Phys. 18, 27432 (2016).

    Article  Google Scholar 

  9. L. A. Chernozatonskii and V. A. Demin, JETP Lett. 107, 315 (2018).

    Article  ADS  Google Scholar 

  10. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  11. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  12. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Top. Appl. Phys. 80, 287 (2001).

    Article  Google Scholar 

  14. N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie, Science (Washington, DC, U. S.) 329, 544 (2010).

    Article  ADS  Google Scholar 

  15. F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).

    Article  Google Scholar 

  16. J. Wang, Z. Li, H. Chen, G. Deng, and X. Niu, Nano-Micro Lett. 11, 48 (2019).

    Article  ADS  Google Scholar 

  17. R. Zan, Q. M. Ramasse, U. Bangert, and K. S. Novoselov, Nano Lett. 12, 3936 (2012).

    Article  ADS  Google Scholar 

  18. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  19. M. N. Nikolaeva, A. N. Bugrov, T. D. Anan’eva, A. T. Dideikin, M. K. Rabchinskii, and A. N. Ionov, Nanosyst.: Phys., Chem., Math. 9, 793 (2018).

    Google Scholar 

  20. L. A. Chernozatonskii and D. G. Kvashnin, Nanotechnology 31, 115203 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-02-01095). D.G. Kvashnin acknowledges the support of the Russian Science Foundation (project no. 17-72-20223, the analysis of electronic properties).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Chernozatonskii.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 4, pp. 244–248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernozatonskii, L.A., Antipina, L.Y. & Kvashnin, D.G. Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure. Jetp Lett. 111, 235–238 (2020). https://doi.org/10.1134/S0021364020040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020040074

Navigation