Skip to main content
Log in

Quark and Gluon Condensates at a Finite Isospin Chemical Potential

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The nonperturbative vacuum of quantum chromodynamics at a finite isospin chemical potential has been studied. Low-energy relations for the quark and gluon condensates have been derived ab initio. Analytical expressions for the quark and gluon condensates in the pion-condensate phase have been obtained at the tree level of the chiral perturbation theory. It has been shown that the quark condensate decreases with increasing μI, whereas the gluon condensate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Migdal, Sov. Phys. JETP 34, 1184 (1971).

    ADS  Google Scholar 

  2. A. B. Migdal, Phys. Rev. Lett. 31, 257 (1973).

    Article  ADS  Google Scholar 

  3. A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, Phys. Rep. 192, 179 (1990).

    Article  ADS  Google Scholar 

  4. R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972).

    Article  ADS  Google Scholar 

  5. D. J. Scalapino, Phys. Rev. Lett. 29, 386 (1972).

    Article  ADS  Google Scholar 

  6. D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001).

    Article  ADS  Google Scholar 

  7. D. T. Son and M. A. Stephanov, Phys. At. Nucl. 64, 834 (2001).

    Article  Google Scholar 

  8. J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 014508 (2002).

    Article  ADS  Google Scholar 

  9. J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505 (2002).

    Article  ADS  Google Scholar 

  10. J. O. Andersen and P. Kneschke, arXiv:1807.08951 [hep-ph].

  11. P. Adhikari and J. O. Andersen, arXiv:1909.01131 [hepph].

  12. M. Mannarelli, Particles 2, 411 (2019).

    Article  Google Scholar 

  13. B. B. Brandt, G. Endrodi, E. S. Fraga, M. Hippert, J. Schaffner-Bielich, and S. Schmalzbauer, Phys. Rev. D 98, 094510 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. He, Y. Jiang, and P. Zhuang, Phys. Rev. C 79, 045205 (2009).

    Article  ADS  Google Scholar 

  15. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 191, 301 (1981).

    Article  ADS  Google Scholar 

  16. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Sov. J. Part. Nucl. 13, 224 (1982).

    Google Scholar 

  17. A. A. Migdal and M. A. Shifman, Phys. Lett. B 114, 445 (1982).

    Article  ADS  Google Scholar 

  18. P. J. Ellis, J. I. Kapusta, and H. B. Tang, Phys. Lett. B 443, 63 (1998).

    Article  ADS  Google Scholar 

  19. I. A. Shushpanov, J. I. Kapusta, and P. J. Ellis, Phys. Rev. C 59, 2931 (1999).

    Article  ADS  Google Scholar 

  20. N. O. Agasian and I. A. Shushpanov, JETP Lett. 70, 717 (1999).

    Article  ADS  Google Scholar 

  21. N. O. Agasian and I. A. Shushpanov, Phys. Lett. B 472, 143 (2000).

    Article  ADS  Google Scholar 

  22. N. O. Agasian and I. A. Shushpanov, J. High Energy Phys. 0110, 006 (2001).

    Article  ADS  Google Scholar 

  23. N. O. Agasian, Phys. At. Nucl. 64, 554 (2001).

    Article  Google Scholar 

  24. N. O. Agasian, JETP Lett. 95, 171 (2012).

    Article  ADS  Google Scholar 

  25. N. O. Agasian, Phys. At. Nucl. 74, 1230 (2011).

    Article  Google Scholar 

  26. N. O. Agasian, Phys. Lett. B 562, 257 (2003).

    Article  ADS  Google Scholar 

  27. N. O. Agasian, Phys. Lett. B 488, 39 (2000).

    Article  ADS  Google Scholar 

  28. N. O. Agasian, Phys. At. Nucl. 71, 1967 (2008).

    Article  Google Scholar 

  29. N. O. Agasian, JETP Lett. 104, 71 (2016).

    Article  ADS  Google Scholar 

  30. N. O. Agasian and S. M. Fedorov, Phys. Lett. B 663, 445 (2008).

    Article  ADS  Google Scholar 

  31. N. O. Agasian, JETP Lett. 57, 208 (1993).

    ADS  Google Scholar 

  32. N. O. Agasian, JETP Lett. 74, 353 (2001).

    Article  ADS  Google Scholar 

  33. N. O. Agasian, Phys. Lett. B 519, 71 (2001).

    Article  ADS  Google Scholar 

  34. N. O. Agasian, Phys. At. Nucl. 68, 723 (2005).

    Article  Google Scholar 

  35. N. O. Agasian, Phys. At. Nucl. 67, 391 (2004).

    Article  Google Scholar 

  36. T. Muta, Foundations of Chromodynamics, Vol. 57 of World Scientific Lecture Notes in Physics (World Scientific, Singapore, 1998).

    Google Scholar 

  37. B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Phys. Rev. D 97, 054514 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

I acknowledge the support of the MEPhI Academic Excellence Project (contract no. 02.A03.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Agasian.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 4, pp. 219–222.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agasian, N.O. Quark and Gluon Condensates at a Finite Isospin Chemical Potential. Jetp Lett. 111, 201–204 (2020). https://doi.org/10.1134/S0021364020040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020040062

Navigation