Skip to main content
Log in

Electronic Structure of Transition-Metal Pnictide Oxides La3T4As4O2 (T = Ni, Cu) from Ab Initio Calculations

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electronic structure of the recently synthesized compounds La3T4As4O2 (T = Ni, Cu) are studied using the ab initio APW + lo method. A careful analysis of band structures and Fermi surfaces via the Local Density Approximation (LDA), the Generalized Gradient Approximation (GGA), and with the on-site Hubbard Ueff parameter (LDA/GGA + U) was performed. Calculations show that the GGA perfectly reproduces the ground state properties such as lattice constants, internal parameters, interatomic distances, angles, band structures and Fermi surfaces. The relationship between the 1111 and 122 structure types and 3442 structure is indicated and discussed. The GGA calculations show that the lattice constants (a0 and c0) satisfy the inter-growth conditions of the 3442 structure. We found a topological similarity between the Fermi surfaces of Ni-3442 and Ni-1111 systems, which respect the five-band model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, and S. Jiang, Europhys. Lett. 83, 67006 (2008).

    Article  ADS  Google Scholar 

  3. V. Vildosola, L. Pourovskii, R. Arita, S. Biermann, and A. Georges, Phys. Rev. B 78, 064518 (2008).

    Article  ADS  Google Scholar 

  4. D. Johrendt, H. Hosono, R.-D. Hoffmann, and R. Pottgen, Z. Kristallogr. 226Z, 435 (2011).

    Google Scholar 

  5. I. R. Shein and A. L. Ivanovskii, JETP Lett. 89, 285 (2009).

    Article  ADS  Google Scholar 

  6. R. J. Cava, H. W. Zandbergen, J. J. Krajewski, T. Siegrist, H. Y. Hwang, A. P. Ramirez, and B. Batlogg, J. Solid State Chem. 129, 250 (1997).

    Article  ADS  Google Scholar 

  7. T. Bartsch, Ch. Benndorf, H. Eckert, M. Eul, and R. Pottgen, Z. Naturforsch. 71, 149 (2016).

    Article  Google Scholar 

  8. M. Eul, D. Johrendt, and R. Pottgen, Z. Naturforsch. B 64, 1353 (2009).

    Article  Google Scholar 

  9. T. Klimczuk, T. M. McQueen, A. J. Williams, Q. Huang, F. Ronning, E. D. Bauer, J. D. Thompson, M. A. Green, and R. J. Cava, Phys. Rev. B 79, 012505 (2009).

    Article  ADS  Google Scholar 

  10. J. W. Kaiser and W. Jeitschko, Z. Naturforsch. B 57, 165 (2002).

    Article  Google Scholar 

  11. J. K. Wang, A. Marcinkova, C.-W. Chen, H. He, M. Aronson, and E. Morosan, Phys. Rev. B 89, 094405 (2014).

    Article  ADS  Google Scholar 

  12. J. K. Wang, Sh. Wu, Y. Qiu, J. A. Rodriguez-Rivera, Q. Huang, C. Broholm, and E. Morosan, Phys. Rev. B 94, 064430 (2016).

    Article  ADS  Google Scholar 

  13. R. Hoffmann and C. Zheng, J. Phys. Chem. 89, 4175 (1985).

    Article  Google Scholar 

  14. G. Just and P. Paufler, J. Alloys Compd. 232, 1 (1996).

    Article  Google Scholar 

  15. T. C. Ozawa and S. M. Kauzlarich, Sci. Technol. Adv. Mater. 9, 033003 (2008).

    Article  Google Scholar 

  16. T. Klimczuk, T. M. McQueen, A. J. Williams, Q. Huang, F. Ronning, E. D. Bauer, J. D. Thompson, M. A. Green, and R. J. Cava, Phys. Rev. B 79, 012505 (2009).

    Article  ADS  Google Scholar 

  17. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus-Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. Technol., Vienna, 2001).

    Google Scholar 

  18. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  19. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  20. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  21. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 5390 (1944).

    Google Scholar 

  22. M. Eula, D. Johrendt, and R. Pottgen, Z. Naturforsch. 64, 1353 (2009).

    Article  Google Scholar 

  23. T. Watanabe, H. Yanagi, Y. Kamihara, T. Kamiya, M. Hirano, and H. Hosono, J. Solid State Chem. 181, 2117 (2008).

    Article  ADS  Google Scholar 

  24. G. Xu, W. Ming, Y. Yao, X. Dai, S.-C. Zhang, and Z. Fang, Europhys. Lett. 82, 6 (2008).

    Google Scholar 

  25. L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).

    Article  ADS  Google Scholar 

  26. E. H. El Ghardaoui, J. Y. Pivan, R. Gherin, O. Pena, J. Padiou, and M. Sergent, Mater. Res. Bull. 23, 1345 (1988).

    Article  Google Scholar 

  27. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 6, 062001 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Algerian Directorate-General for Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendeddouche, Z., Zaoui, A., Kacimi, S. et al. Electronic Structure of Transition-Metal Pnictide Oxides La3T4As4O2 (T = Ni, Cu) from Ab Initio Calculations. Jetp Lett. 111, 210–217 (2020). https://doi.org/10.1134/S0021364020040013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020040013

Navigation