Skip to main content
Log in

Competition between BCS and FFLO States in Magnetic Superconductors in a Cryptoferromagnetic Phase

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The possibility of appearance of inhomogeneous superconducting Fulde—Ferrell—Larkin—Ovchinnikov (FFLO) states in magnetic superconductors in a cryptoferromagnetic phase with helical magnetic ordering has been analyzed. The dependence of the critical temperature on the angle between the wave vectors of the spatial modulation of the FFLO state and helical magnetic structure has been calculated within the proposed model. It has been shown that their mutually perpendicular orientation corresponds to the most energetically favorable state. The numerical calculations have also shown the existence of a tricritical point on a line separating the Bardeen—Cooper—Schrieffer and FFLO phases on the phase diagram of states. Furthermore, FFLO states can appear in a magnetic superconductor even at fairly strong exchange fields because of the difference between the effective masses of conduction electrons in different spin subbands and the anisotropy of the Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1956).

    Google Scholar 

  2. B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958).

    Article  ADS  Google Scholar 

  3. H. Suhl and B. T. Matthias, Phys. Rev. 114, 977 (1959).

    Article  ADS  Google Scholar 

  4. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243 (1960).

    Google Scholar 

  5. W. Baltensperger, Phys. (Amsterdam, Neth.) 24, S153 (1958).

    Article  ADS  Google Scholar 

  6. G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).

    Article  ADS  Google Scholar 

  7. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).

    Google Scholar 

  8. P. Fulde and R. Ferrell, Phys. Rev. 135, A550 (1964).

    Article  ADS  Google Scholar 

  9. S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike, K. Enomoto, H. Cui, H. Kobayashi, A. Kobayashi, H. Tanaka, M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks, Phys. Rev. Lett. 97, 157001 (2006).

    Article  ADS  Google Scholar 

  10. R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B. Bergk, G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Phys. Rev. Lett. 99, 187002 (2007).

    Article  ADS  Google Scholar 

  11. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).

    Article  ADS  Google Scholar 

  12. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).

    Article  ADS  Google Scholar 

  13. R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature (London, U.K.) 439, 7078 (2006).

    Article  Google Scholar 

  14. A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld, S. Poletto, V. V. Ryazanov, A. N. Rossolenko, M. Khabipov, D. Balashov, A. B. Zorin, P. N. Dmitriev, V. P. Koshelets, and A. V. Ustinov, Nat. Phys. 6, 593 (2010).

    Article  Google Scholar 

  15. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I. A. Garifullin, Phys. Rev. B 91, 214508 (2015).

    Article  ADS  Google Scholar 

  16. A. Singh, S. Voltan, K. Lahabi, and J. Aarts, Phys. Rev. X 5, 021019 (2015).

    Google Scholar 

  17. A. F. Volkov and K. B. Efetov, Phys. Rev. B 81, 144522 (2010).

    Article  ADS  Google Scholar 

  18. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91, 308 (2010).

    Article  ADS  Google Scholar 

  19. F. S. Bergeret and I. V. Tokatly, Phys. Rev. Lett. 110, 117003 (2013).

    Article  ADS  Google Scholar 

  20. M. V. Avdeev and Yu. N. Proshin, J. Exp. Theor. Phys. 117, 1101 (2013).

    Article  Google Scholar 

  21. M. Alidoust, K. Halterman, and O. T. Valls, Phys. Rev. B 92, 014508 (2015).

    Article  ADS  Google Scholar 

  22. K. Halterman, O. T. Valls, and Ch.-Te. Wu, Phys. Rev. B 92, 174516 (2015).

    Article  ADS  Google Scholar 

  23. M. V. Avdeev and Yu. N. Proshin, JETP Lett. 102, 96 (2015).

    Article  ADS  Google Scholar 

  24. M. Avdeev and Y. Proshin, J. Low Temp. Phys. 185, 453 (2016).

    Article  ADS  Google Scholar 

  25. K. Halterman and M. Alidoust, Phys. Rev. B 94, 064503 (2016).

    Article  ADS  Google Scholar 

  26. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Phys. Usp. 45, 109 (2002).

    Article  ADS  Google Scholar 

  27. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  28. A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).

    Article  ADS  Google Scholar 

  29. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

    Article  ADS  Google Scholar 

  30. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).

    Article  ADS  Google Scholar 

  31. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).

    Article  ADS  Google Scholar 

  32. P. W. Anderson and H. Suhl, Phys. Rev. 116, 898 (1959).

    Article  ADS  Google Scholar 

  33. A. I. Buzdin, L. Bulaevskii, M. Kulich, and S. Panyukov, Sov. Phys. Usp. 27, 927 (1984).

    Article  ADS  Google Scholar 

  34. M. V. Avdeev and Y. N. Proshin, Phys. Rev. B 97, 100502 (2018).

    Article  ADS  Google Scholar 

  35. Y. N. Proshin and M. V. Avdeev, J. Magn. Magn. Mater. 459, 359 (2018).

    Article  ADS  Google Scholar 

  36. L. N. Bulaevskii, A. I. Rusinov, and M. Kulić, J. Low Temp. Phys. 39, 255 (1980).

    Article  ADS  Google Scholar 

  37. L. Bulaevskii, R. Eneias, and A. Ferraz, Phys. Rev. B 93, 014501 (2016).

    Article  ADS  Google Scholar 

  38. H. Meng, A. V. Samokhvalov, and A. I. Buzdin, Phys. Rev. B 99, 024503 (2019).

    Article  ADS  Google Scholar 

  39. V. A. Tumanov and Y. N. Proshin, J. Low Temp. Phys. 186, 460 (2016).

    Article  ADS  Google Scholar 

  40. V. A. Tumanov, Y. V. Goryunov, and Y. N. Proshin, JETP Lett. 107, 426 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 3.2166.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Avdeev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 154–159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siraev, F.M., Kutuzov, A.S., Avdeev, M.V. et al. Competition between BCS and FFLO States in Magnetic Superconductors in a Cryptoferromagnetic Phase. Jetp Lett. 111, 139–144 (2020). https://doi.org/10.1134/S0021364020030133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030133

Navigation