Skip to main content
Log in

Phase Diagrams of Iron Hydrides at Pressures of 100–400 GPa and Temperatures of 0–5000 K

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The stability of Fe4H, Fe2H, FeH, Fe3H5, FeH2, FeH3, FeH4, Fe3H13, FeH5, and FeH6 iron hydrides at temperatures of 0–5000 K and pressures of 100–400 GPa has been analyzed for the first time in the density functional theory using the lattice dynamics method in the quasiharmonic approximation, and the corresponding PT phase diagrams have been obtained. It has been found that heating expands a set of stable stoichiometric compounds, so that a number of structures metastable at room temperature are stabilized at temperatures above 1000 K. The topological analysis of structures of iron hydrides indicates that most of them belong to rare or unique topological types. An increase in the amount of hydrogen in a structure is accompanied by the reduction of the length of an H-H bond, which results in the formation of dumbbell-like hydrogen molecules H2 in FeHx structures with x > 6. However, these structures are thermodynamically unstable and decay into a mixture of FeH6 and solid H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. Shylin, Nature 525, 73 (2015).

    Article  ADS  Google Scholar 

  2. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2014).

    Article  ADS  Google Scholar 

  3. E. Zurek and T. Bi, J. Chem. Phys. 150, 050901 (2019).

    Article  ADS  Google Scholar 

  4. D. V. Semenok, A. G. Kvashnin, I. A. Kruglov, and A. R. Oganov, J. Phys. Chem. Lett. 9, 1920 (2018).

    Article  Google Scholar 

  5. C. J. Pickard, I. Errea, and M. I. Eremets, Ann. Rev. Condens. Matt. Phys. 11, 57 (2019).

    Article  Google Scholar 

  6. A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, and V. Prakapenka, Nature 569, 528 (2019).

    Article  ADS  Google Scholar 

  7. H. Liu, I. I. Naumov, R. Hoffmann, N. Ashcroft, and R. J. Hemley, Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).

    Article  ADS  Google Scholar 

  8. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  9. R. Xi, Y. Jing, J. Li, Y. Deng, X. Cao, and G. Yang, J. Phys. Chem. C 123, 24243 (2019).

    Article  Google Scholar 

  10. L. Wang, D. Duan, H. Yu, H. Xie, X. Huang, Y. Ma, F. Tian, D. Li, B. Liu, and T. Cui, Inorg. Chem. 57, 181 (2017).

    Article  Google Scholar 

  11. X.-H. Xiao, D.-F. Duan, Y.-B. Ma, H. Xie, H. Song, D. Li, F.-B. Tian, B.-B. Liu, H.-Y. Yu, and T. Cui, Front. Phys. 14, 43601 (2019).

    Article  ADS  Google Scholar 

  12. Q. Zhuang, X. Jin, T. Cui, Y. Ma, Q. Lv, Y. Li, H. Zhang, X. Meng, and K. Bao, Inorg. Chem. 56, 3901 (2017).

    Article  Google Scholar 

  13. A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, and A. R. Oganov, J. Phys. Chem. C 122, 4731 (2018).

    Article  Google Scholar 

  14. A. Majumdar, S. T. John, M. Wu, and Y. Yao, Phys. Rev. B 96, 201107 (2017).

    Article  ADS  Google Scholar 

  15. N. Hirao, T. Kondo, E. Ohtani, K. Takemura, and T. Kikegawa, Geophys. Res. Lett. 31, L06616 (2004).

    Article  ADS  Google Scholar 

  16. N. Skorodumova, R. Ahuja, and B. Johansson, Geophys. Res. Lett. 31, L08601 (2004).

    Article  ADS  Google Scholar 

  17. Z. G. Bazhanova, A. R. Oganov, and O. Dzhanola, Phys. Usp. 55, 489 (2012).

    Article  ADS  Google Scholar 

  18. F. Li, D. Wang, H. Du, D. Zhou, Y. Ma, and Y. Liu, RSC Adv. 7, 12570 (2017).

    Article  Google Scholar 

  19. N. Zarifi, T. Bi, H. Liu, and E. Zurek, J. Phys. Chem. C 122, 24262 (2018).

    Article  Google Scholar 

  20. S. Zhang, J. Lin, Y. Wang, G. Yang, A. Bergara, and Y. Ma, J. Phys. Chem. C 122, 12022 (2018).

    Article  Google Scholar 

  21. C. J. Pickard and R. Needs, Phys. Rev. Lett. 97, 045504 (2006).

    Article  ADS  Google Scholar 

  22. C. J. Pickard and R. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).

    ADS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  26. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  28. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

    Article  Google Scholar 

  30. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Cryst. Growth Des. 14, 3576 (2014).

    Article  Google Scholar 

  31. M. O’Keeffe, M. Peskov, S. Ramsden, and O. Yaghi, Acc. Chem. Res. 41, 1782 (2008).

    Article  Google Scholar 

  32. E. Alexandrov, V. Blatov, A. Kochetkov, and D. Proserpio, Cryst. Eng. Comm. 13, 3947 (2011).

    Article  Google Scholar 

  33. P. N. Gavryushkin, N. Sagatov, Z. I. Popov, A. Bekhtenova, T. M. Inerbaev, and K. D. Litasov, JETP Lett. 107, 379 (2018).

    Article  ADS  Google Scholar 

  34. Z. I. Popov, K. D. Litasov, P. N. Gavryushkin, S. G. Ovchinnikov, and A. S. Fedorov, JETP Lett. 101, 371 (2015).

    Article  ADS  Google Scholar 

  35. N. Sagatov, P. N. Gavryushkin, T. M. Inerbaev, and K. D. Litasov, RSC Adv. 9, 3577 (2019).

    Article  Google Scholar 

  36. K. D. Litasov and A. F. Shatskiy, Russ. Geol. Geophys. 57, 22 (2016).

    Article  ADS  Google Scholar 

  37. Z. Zhao, L. Liu, S. Zhang, T. Yu, F. Li, and G. Yang, RSC Adv. 7, 15986 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Supercomputer Center, Novosibirsk State University, for access to the resources of the cluster.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Russian Science Foundation (project no. 17-17-01177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sagatova.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 160–165.

Supplemental Material to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagatova, D.N., Gavryushkin, P.N., Sagatov, N.E. et al. Phase Diagrams of Iron Hydrides at Pressures of 100–400 GPa and Temperatures of 0–5000 K. Jetp Lett. 111, 145–150 (2020). https://doi.org/10.1134/S0021364020030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030108

Navigation