Skip to main content
Log in

Effect of Barium Codoping on Superconductivity in SrxBi2Se3

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A structural reason for superconductivity in a Cu-, Sr-, or Nb-atom-doped Bi2Se3 topological insulator is still unclear. To understand this reason, a codoping approach has been developed and BaySrxBi2Se3 single crystals with different x and y values have been grown. The composition and structural and transport properties of the grown crystals have been studied. With X-ray diffraction data, it has been shown that barium and strontium intercalate the system, although barium is present in the structure in a very small amount. The addition of barium surprisingly destroys superconductivity, slightly changing the lattice constants, the strontium doping level of the crystal matrix, and the electron density. Thus, a key role of a certain coordination arrangement of positions of strontium atoms between Bi2Se3 quintuples for achieving superconductivity in this material has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Liu, X. Yao, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, and Y. Zhang, J. Am. Chem. Soc. 137, 10512 (2015).

    Article  Google Scholar 

  3. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

    Article  ADS  Google Scholar 

  4. T. Asaba, B. J. Lawson, C. Tinsman, L. Chen, P. Corbae, G. Li, Y. Qiu, Y. S. Hor, L. Fu, and L. Li, Phys. Rev. X 7, 011009 (2017).

    Google Scholar 

  5. L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).

    Article  ADS  Google Scholar 

  6. L. Fu, Phys. Rev. B 90, 100509(R) (2014).

    Article  ADS  Google Scholar 

  7. X. Wan and S. Y. Savrasov, Nat. Commun. 5, 4144 (2014).

    Article  ADS  Google Scholar 

  8. P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau, Phys. Rev. B 90, 184512 (2014).

    Article  ADS  Google Scholar 

  9. J. Wang, K. Ran, S. Li, Z. Ma, S. Bao, Z. Cai, Y. Zhang, K. Nakajima, S. Ohira-Kawamura, P. Čermàk, A. Schneidewind, S. Y. Savrasov, X. Wan, and J. Wen, Nat. Commun. 10, 2802 (2019).

    Article  ADS  Google Scholar 

  10. Y. Pan, A. M. Nikitin, G. K. Araizi, Y. K. Huang, Y. Matsushita, T. Naka, and A. de Visser, Sci. Rep. 6, 28632 (2016).

    Article  ADS  Google Scholar 

  11. S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, and Y. Maeno, Nat. Phys. 13, 123 (2017).

    Article  Google Scholar 

  12. R. Tao, Y.-J. Yan, X. Liu, Z.-W. Wang, Y. Ando, Q.-H. Wang, T. Zhang, and D.-L. Feng, Phys. Rev. X 8, 041024 (2018).

    Google Scholar 

  13. K. Matano, M. Kriener, K. Segawa, Y. Ando, and G. Zheng, Nat. Phys. 12, 852 (2016).

    Article  Google Scholar 

  14. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Phys. Rev. Lett. 107, 217001 (2010).

    Article  ADS  Google Scholar 

  15. S. Yonezawa, Condens. Matter 4, 2 (2019).

    Article  Google Scholar 

  16. M. Kriener, K. Segawa, Z. Ren, S. Sasaki, S. Wada, S. Kuwabata, and Y. Ando, Phys. Rev. B 84, 054513 (2011).

    Article  ADS  Google Scholar 

  17. K. Kobayashi, T. Ueno, H. Fujiwara, T. Yokoya, and J. Akimitsu, Phys. Rev. B 95, 180503(R) (2017).

    Article  ADS  Google Scholar 

  18. S.-H. Yu, T. L. Hung, M.-N. Ou, M. M. C. Chou, and Y.-Y. Chen, Phys. Rev. B 100, 174502 (2019).

    Article  ADS  Google Scholar 

  19. H. Huang, J. Gu, M. Tan, Q. Wang, P. Ji, and X. Hu, Sci. Rep. 7, 45565 (2017).

    Article  ADS  Google Scholar 

  20. A. Yu. Kuntsevich, V. P. Martovitskii, G. V. Rybalchenko, Yu. G. Selivanov, M. I. Bannikov, O. A. Sobolevskiy, and E. G. Chigevskii, Materials 12, 3899 (2019).

    Article  ADS  Google Scholar 

  21. S. O. Volosheniuk, Yu. G. Selivanov, M. A. Bryzgalov, V. P. Martovitskii, and A. Yu. Kuntsevich, J. Appl. Phys. 125, 095103 (2019).

    Article  ADS  Google Scholar 

  22. Z. Li, M. Wang, D. Zhang, N. Feng, W. Jiang, C. Han, W. Chen, M. Ye, C. Gao, J. Jia, J. Li, S. Qiao, D. Qian, B. Xu, H. Tian, and B. Gao, Phys. Rev. Mater. 2, 014201 (2018).

    Article  Google Scholar 

  23. A. Yu. Kuntsevich, M. A. Bryzgalov, V. A. Prudkoglyad, V. P. Martovitskii, Yu. G. Selivanov, and E. G. Chizhevskii, New J. Phys. 20, 103022 (2018).

    Article  Google Scholar 

  24. A. Yu. Kuntsevich, M. A. Bryzgalov, V. P. Martovitskii, R. S. Akzyanov, Yu. G. Selivanov, and A. L. Rakhmanov, Phys. Rev. B 100, 224509 (2019).

    Article  ADS  Google Scholar 

  25. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).

    Article  ADS  Google Scholar 

  26. J. Moon, N. Koirala, M. Salehi, W. Zhang, W. Wu, and S. Oh, Nano Lett. 18, 820 (2018).

    Article  ADS  Google Scholar 

  27. E. T. Kulatov, V. N. Men’shov, V. V. Tugushev, and Yu. A. Uspenskii, JETP Lett. 109, 102 (2019).

    Article  ADS  Google Scholar 

  28. L. N. Oveshnikov, V. A. Prudkoglyad, Yu. G. Selivanov, E. G. Chizhevskii, and B. A. Aronzon, JETP Lett. 106, 526 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The measurements were performed at the Shared Facility Center, Lebedev Physical Institute, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Russian Science Foundation, project no. 17-12-01544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kuntsevich.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 166–172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntsevich, A.Y., Rybal’chenko, G.V., Martovitskii, V.P. et al. Effect of Barium Codoping on Superconductivity in SrxBi2Se3. Jetp Lett. 111, 151–156 (2020). https://doi.org/10.1134/S002136402003008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402003008X

Navigation