Skip to main content
Log in

Joule—Thomson Cooling in Graphene

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Electrons in graphene exhibit hydrodynamic behavior in a certain range of temperatures. We indicate that in this regime electric current can result in cooling of electron fluid due to the Joule—Thomson effect. Cooling occurs in the Fermi-liquid regime, while for the Dirac fluid the effect results in heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Gurzhi, Sov. Phys. JETP 17, 521 (1963).

    Google Scholar 

  2. I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys. Rev. B 92, 165433 (2015); arXiv: 1508.00363.

    Article  ADS  Google Scholar 

  3. L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016); arXiv: 1508.00836.

    Article  Google Scholar 

  4. D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, Science (Washington, DC, U. S.) 351, 1055 (2016); arXiv: 1509.04165.

    Article  ADS  Google Scholar 

  5. J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and K. C. Fong, Science (Washington, DC, U. S.) 351, 1058 (2016); arXiv: 1509.04713.

    Article  ADS  Google Scholar 

  6. R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, et al., Nat. Phys. 13, 1182 (2017); arXiv: 1703.06672.

    Article  Google Scholar 

  7. D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Kumar, A. I. Berdyugin, M. Ben Shalom, I. V. Grigorieva, A. K. Geim, and G. Falkovich, Nat. Commun. 9, 4533 (2018); arXiv: 1806.03231.

    Article  ADS  Google Scholar 

  8. P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P. Mackenzie, Science (Washington, DC, U.S.) 351, 1061 (2016); arXiv: 1509.05691.

    Article  ADS  Google Scholar 

  9. J. Gooth, F. Menges, N. Kumar, V. Sü, C. Shekhar, Y. Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Nat. Commun. 9, 4093 (2018); arXiv: 1706.05925.

    Article  ADS  Google Scholar 

  10. H. Guo, E. Ilseven, G. Falkovich, and L. S. Levitov, Proc. Natl. Acad. Sci. U. S. A. 114, 3068 (2017); arXiv: 1607.07269.

    Article  ADS  Google Scholar 

  11. A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Phys. Rev. B 93, 075426 (2016); arXiv: 1510.01738.

    Article  ADS  Google Scholar 

  12. A. Lucas, R. A. Davison, and S. Sachdev, Proc. Natl. Acad. Sci. U. S. A. 113, 9463 (2016); arXiv: 1604.08598.

    Article  ADS  Google Scholar 

  13. A. Lucas and K. Ch. Fong, J. Phys.: Condens. Matter 30, 053001 (2018); arXiv: 1710.08425.

    ADS  Google Scholar 

  14. B. N. Narozhny, I. V. Gornyi, A. D. Mirlin, and J. Schmalian, Ann. Phys. 529, 1700043 (2017); arXiv: 1704.03494.

    Article  Google Scholar 

  15. B. N. Narozhny, Ann. Phys. 411, 167979 (2019); arXiv: 1905.09686.

    Article  MathSciNet  Google Scholar 

  16. W. Thomson and J. P. Joule, Phil. Trans. R. Soc. London 143, 357 (1853).

    Article  ADS  Google Scholar 

  17. F. Vischi, M. Carrega, A. Braggio, F. Paolucci, F. Bianco, S. Roddaro, and F. Giazotto, arXiv: 1906.10988.

  18. M. S. Foster and I. L. Aleiner, Phys. Rev. B 79, 085415 (2009); arXiv: 0810.4342.

    Article  ADS  Google Scholar 

  19. E. I. Kiselev and J. Schmalian, Phys. Rev. B 99, 035430 (2019); arXiv: 1806.03933.

    Article  ADS  Google Scholar 

  20. G. Falkovich and L. Levitov, Phys. Rev. Lett. 119, 066601 (2017); arXiv: 1607.00986.

    Article  ADS  Google Scholar 

  21. J. Erdmenger, I. Matthaiakakis, R. Meyer, and D. R. Fernández, Phys. Rev. B 98, 195143 (2018); arXiv: 1806.10635.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to A. Balatsky and G. Falkovich for discussions.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Swedish Research Council (VR) (grant no. 2013-4329), by the Knut and Alice Wallenberg Foundation (grant “Exact Results in Gauge and String Theories”), and by the Russian Foundation for Basic Research (project no. 18-01-00460A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zarembo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarembo, K. Joule—Thomson Cooling in Graphene. Jetp Lett. 111, 157–161 (2020). https://doi.org/10.1134/S0021364020030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030030

Navigation