Skip to main content
Log in

Electron-Hole Liquid in Monolayer Transition Metal Dichalcogenide Heterostructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Monolayer films of transition metal dichalcogenides (in particular, MoS2, MoSe2, WS2, and WSe2) can be considered as ideal systems for the studies of high-temperature electron-hole liquids. The quasi-two-dimensional nature of electrons and holes ensures their stronger interaction as compared to that in bulk semiconductors. The screening of the Coulomb interaction in monolayer heterostructures is significantly reduced, since it is determined by the permittivities of the environment (e.g., vacuum and substrate), which are much lower than those characteristic of the films of transition metal dichalcogenides. The multivalley structure of the energy spectrum of charge carriers in transition metal dichalcogenides significantly reduces the kinetic energy, resulting in the increase in the equilibrium density and binding energy of the electron-hole liquid. The binding energy of the electron-hole liquid and its equilibrium density are determined. It is shown that the two-dimensional Coulomb potential should be used in the calculations for the electron-hole liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Ratnikov and A. P. Silin, Phys. Usp. 61, 1139 (2018).

    Article  ADS  Google Scholar 

  2. P. Miro, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014).

    Article  Google Scholar 

  3. A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  4. L. N. Bulaevskii, Sov. Phys. Usp. 18, 514 (1975).

    Article  ADS  Google Scholar 

  5. L. N. Bulaevskii, Sov. Phys. Usp. 19, 836 (1976).

    Article  ADS  Google Scholar 

  6. M. V. Durnev and M. M. Glazov, Phys. Usp. 61, 825 (2018).

    Article  ADS  Google Scholar 

  7. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).

    Article  ADS  Google Scholar 

  8. V. L. Kalikhman and Ya. S. Umanskii, Sov. Phys. Usp. 15, 728 (1972).

    Article  ADS  Google Scholar 

  9. A. P. Silin, Sov. Phys. Solid State 20, 1983 (1978).

    Google Scholar 

  10. L. A. Chernozatonskii and A. A. Artyukh, Phys. Usp. 61, 2 (2018).

    Article  ADS  Google Scholar 

  11. Yiling Yu, Yifei Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, Ch. G. van de Walle, Nh. V. Nguyen, Y.-W. Zhang, and L. Cao, Sci. Rep. 5, 16996 (2016).

    Article  ADS  Google Scholar 

  12. E. A. Andryushin, L. V. Keldysh, and A. P. Silin, Sov. Phys. JETP 46, 616 (1977).

    ADS  Google Scholar 

  13. T. Rice, J. Hensel, T. Phillips, and G. Thomas, Solid State Phys. 32, 88 (1977).

    Google Scholar 

  14. Electron-Hole Droplets in Semiconductors, Ed. by C. D. Jeffries and L. V. Keldysh (Elsevier Science, Amsterdam, 1983).

    Google Scholar 

  15. S. G. Tikhodeev, Sov. Phys. Usp. 28, 1 (1985).

    Article  ADS  Google Scholar 

  16. N. N. Sibeldin, J. Exp. Theor. Phys. 122, 587 (2016).

    Article  ADS  Google Scholar 

  17. N. N. Sibeldin, Phys. Usp. 60, 1147 (2017).

    Article  ADS  Google Scholar 

  18. Y. Yu, A. W. Bataller, R. Younts, Y. Yu, G. Li, A. A. Puretzky, D. B. Geohegan, K. Gundogdu, and L. Cao, ACS Nano 13, 10351 (2019).

    Article  Google Scholar 

  19. E. A. Andryushin and A. P. Silin, Sov. Phys. Solid State 21, 491 (1979).

    Google Scholar 

  20. E. A. Andryushin, V. S. Babichenko, L. V. Keldysh, T. A. Onishchenko, and A. P. Silin, JETP Lett. 24, 185 (1976).

    ADS  Google Scholar 

  21. E. A. Andryushin and A. P. Silin, Sov. Phys. Solid State 18, 1243 (1976).

    Google Scholar 

  22. E. A. Andryushin and A. P. Silin, Solid State Comm. 20, 453 (1976).

    Article  ADS  Google Scholar 

  23. N. S. Rytova, Vestn. Mosk. Univ., Ser.: Fiz. Astron., No. 3, 30 (1967).

    Google Scholar 

  24. L. V. Keldysh, JETP Lett. 29, 658 (1979).

    ADS  Google Scholar 

  25. A. Rustagi and A. F. Kemper, Nano Lett. 18, 455 (2018).

    Article  ADS  Google Scholar 

  26. L. E. Pechenik and A. P. Silin, Kratk. Soobshch. Fiz. FIAN, Nos. 5–6, 72 (1996).

    Google Scholar 

  27. E. A. Andryushin, L. E. Pechenik, and A. P. Silin, Kratk. Soobshch. Fiz. FIAN, Nos. 7–8, 68 (1996).

    Google Scholar 

  28. A. P. Silin and S. V. Shubenkov, Phys. Solid State 42, 24 (2000).

    Article  ADS  Google Scholar 

  29. V. S. Babichenko and I. Ya. Polishchuk, JETP Lett. 97, 628 (2013).

    Article  ADS  Google Scholar 

  30. A. P. Silin, Kratk. Soobshch. Fiz. FIAN, No. 5, 30 (1983).

    Google Scholar 

  31. M. Combescot and P. Nozieres, J. Phys. C 5, 2369 (1972).

    Article  ADS  Google Scholar 

  32. E. A. Andryushin and A. P. Silin, Sov. Phys. Solid State 19, 815 (1977).

    Google Scholar 

  33. T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R.-H. He, S.-K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Nano Lett. 14, 1312 (2014).

    Article  ADS  Google Scholar 

  34. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys. Rev. B 88, 045318 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

P.V. Ratnikov acknowledges the support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 17-14-440-1, the general formulation of the problem) and of the Russian Science Foundation (project no. 16-12-10538-P, the calculations of the correlation energy, Section 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Pekh.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 2, pp. 80-85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekh, P.L., Ratnikov, P.V. & Silin, A.P. Electron-Hole Liquid in Monolayer Transition Metal Dichalcogenide Heterostructures. Jetp Lett. 111, 90–95 (2020). https://doi.org/10.1134/S0021364020020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020020101

Navigation