Skip to main content
Log in

Simulation of the Formation and Mechanical Properties of Layered Structures with Polymerized Fullerene-Graphene Components

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A new class of nanocomposites-fullerene-graphene compounds whose components are partially polymerized-has been considered. Various two- and three-dimensional covalent and molecular compounds of graphene monolayers and C60 fullerenes from a bilayer to a multilayer superlattice, in particular, with partial polymerization of fullerenes with each other and with adjacent graphene sheets have been studied. It has been shown that all considered compounds are energetically more stable at the formation of covalent bonds between components. The structures of a number of considered compounds have been compared to existing experimental data. Covalent compounds of components strengthen the structure: its Young’s modulus is more than an order of magnitude higher than the elastic moduli of molecular fullerite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Ceron, C. Zhan, P. G. Campbell, M. C. Freyman, C. Santoyo, L. Echegoyen, B. C. Wood, J. Biener, T. A. Pham, and M. Biener, ACS Appl. Mater. Interfaces 11, 28818 (2019).

    Article  Google Scholar 

  2. M. R. Ceron, V. I. Vedharathinama, P. G. Campbella, T. A. Phama, B. C. Wooda, J. Bienera, L. Echegoyen, and M. M. Biener, ECS Meeting Abstracts. http://ma.ecsdl.org/content/MA2019-01/12/832.short.

  3. J. M. Devi, Bull. Mater. Sci. 42, 75 (2019).

    Article  Google Scholar 

  4. Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, and D. Mitlin, Adv. Sci. 6, 1802272 (2019).

    Article  Google Scholar 

  5. G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, ACS Nano 9, 7175 (2015).

    Article  Google Scholar 

  6. R. Chen, L. Cheng, Y. Huan, T. Yuting, S. Chao, Y. Lihui, L. Hai, X. Xiaoji, W. Lianhui, and H. Wei Huang, Chem. Mater. 28, 4300 (2016).

    Article  Google Scholar 

  7. M. Ishikawa, S. Kamiya, S. Yoshimoto, M. Suzuki, D. Kuwahara, N. Sasaki, and K. Miura, J. Nanomater. 2010, 891514 (2010).

    Article  Google Scholar 

  8. R. Mirzayev, K. Mustonen, M. Monazam, A. Mittelberger, T. Pennycook, C. Mangler, T. Susi, J. Kotakoski, and J. Meyer, Sci. Adv. 3, e1700176 (2017).

    Article  ADS  Google Scholar 

  9. G.-W. Wang, K. Komatsu, Y. Murata, and M. Shiro, Nature (London, U.K.) 387, 583 (1997).

    Article  ADS  Google Scholar 

  10. C. Pei and L. Wanga, Matt. Radiat. Extremes 4, 028201 (2019).

    Article  Google Scholar 

  11. E. Alvarez-Zauco, H. Sobral, E. Basiuk, J. Saniger, and M. Villagran-Muniz, Appl. Surf. Sci. 248, 243 (2005).

    Article  ADS  Google Scholar 

  12. J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).

    Article  Google Scholar 

  13. D. W. Brenner, Phys. Rev. B 42, 15 (1990).

    Article  Google Scholar 

  14. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).

    Article  ADS  Google Scholar 

  15. S. Okada, M. Otani, and A. Oshiyama, Phys. Rev. B 67, 205411 (2003).

    Article  ADS  Google Scholar 

  16. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008).

    Article  ADS  Google Scholar 

  17. A. Hashimoto, H. Terasaki, A. Yamamoto, and S. Tanaka, Diamond Relat. Mater. 18, 388 (2009).

    Article  ADS  Google Scholar 

  18. S. Saito and A. Oshiyama, Phys. Rev. B 49, 17413 (1994).

    Article  ADS  Google Scholar 

  19. P. C. Eklund and A. M. Rao, Fullerene Polymers and Fullerene Polymer Composites (Springer, Berlin, 2000).

    Book  Google Scholar 

  20. M. Alvarez-Murga and J. L. Hodeau, Carbon 82, 381 (2015).

    Article  Google Scholar 

  21. G. Mills, H. Jonsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).

    Article  ADS  Google Scholar 

  22. J. Mestres, M. Duran, and M. Sola, J. Phys. Chem. 100, 7449 (1996).

    Article  Google Scholar 

  23. V. M. Rotello, J. B. Howard, T. Yadav, M. M. Conn, E. Viani, L. M. Giovane, and A. L. Lafleur, Tetrahedron Lett. 34, 1561 (1993).

    Article  Google Scholar 

  24. E. F. Sheka and L. Kh. Shaymardanova, J. Mater. Chem. 21, 17128 (2011).

    Article  Google Scholar 

  25. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  Google Scholar 

  26. L. A. Chernozatonskii, A. A. Artyukh, and V. A. Demin, JETP Lett. 97, 113 (2013).

    Article  ADS  Google Scholar 

  27. L. Kh. Rysaeva, J. A. Baimova, D. S. Lisovenko, V. A. Gorodtsov, and S. V. Dmitriev, Phys. Status Solidi B 256, 1800049 (2019).

    Article  ADS  Google Scholar 

  28. M. Chen, R. Guan, and S. Yang, Adv. Sci. 6, 1800941 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The calculations were performed at the Interdisciplinary Computer Center, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 16-29-06201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Chernozatonskii.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 2, pp. 93-100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyukh, A.A., Chernozatonskii, L.A. Simulation of the Formation and Mechanical Properties of Layered Structures with Polymerized Fullerene-Graphene Components. Jetp Lett. 111, 109–115 (2020). https://doi.org/10.1134/S0021364020020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020020058

Navigation