Universal Bottleneck for Thermal Relaxation in Disordered Metallic Films

  • E. M. Baeva
  • N. A. Titova
  • A. I. Kardakova
  • S. U. Piatrusha
  • V. S. KhrapaiEmail author


We study the heat relaxation in current biased metallic films in the regime of strong electron-phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of voltage bias, in spite of the fact that all the dimensions of the film are large compared to the electron-phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron-phonon scattering rate. A preliminary experimental study of a 200 nm thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25(6), 063001 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    I. Holzman and Y. Ivry, Advanced Quantum Technologies 2(3–4), 1800058 (2019).CrossRefGoogle Scholar
  3. 3.
    F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, C. Lambert, J. A. Stern, R. D. Horansky, S. Dyer, S. Duff, D. P. Pappas, A. E. Lita, M. D. Shaw, R. P. Mirin, and S. W. Nam, Phys. Rev. B 93(9), 094518 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, Sci. Rep. 8(1), 1486 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    T. M. Klapwijk and A. V. Semenov, IEEE Trans. Terahertz Sci. Technology 7(6), 627 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    I. Tamir, A. Benyamini, E. J. Telford, F. Gorniaczyk, A. Doron, T. Levinson, D. Wang, F. Gay, B. Sacépé, J. Hone, K. Watanabe, T. Taniguchi, C. R. Dean, A. N. Pasupathy, and D. Shahar, Science Advances 5(3), eaau3826 (2019).ADSCrossRefGoogle Scholar
  7. 7.
    D. Yu. Vodolazov, Phys. Rev. Appl. 7, 034014 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, J. Appl. Phys. 108, 084507 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    F. Marsili, F. Najafi, C. Herder, and K. K. Berggren, Appl. Phys. Lett. 98, 093507 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    L. Zhang, L. You, X. Yang, Y. Tang, M. Si, K. Yan, W. Zhang, H. Li, H. Zhou, W. Peng, and Z. Wang, Appl. Phys. Lett. 115, 132602 (2019).ADSCrossRefGoogle Scholar
  11. 11.
    E. Baeva, M. Sidorova, A. Korneev, K. Smirnov, A. Divochy, P. Morozov, P. Zolotov, Y. Vakhtomin, A. Semenov, T. Klapwijk, V. Khrapai, and G. Goltsman, Phys. Rev. Appl. 10, 064063 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    D. Rall, P. Probst, M. Hofherr, S. Wünsch, K. Il’in, U. Lemmer, and M. Siegel, J. Phys. Conf. Ser. 234, 042029 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T. M. Klapwijk, and G. Goltsman, Appl. Phys. Lett. 103, 252602 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    M. V. Sidorova, A. G. Kozorezov, A. V. Semenov, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, G. M. Chulkova, and G. N. Goltsman, Phys. Rev. B 97, 184512 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    M. Sidorova, A. Semenov, H.-W. Hübers, K. Ilin, M. Siegel, I. Charaev, M. Moshkova, N. Kaurova, G. N. Goltsman, X. Zhang, and A. Schilling, arXiv:1907.05039.Google Scholar
  16. 16.
    R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    S. U. Piatrusha, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. S. Tikhonov, Phys. Rev. B 96, 245417 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    K. Nagaev, Phys. Lett. A 169, 103 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P. Zolotov, A. Antipov, and V. Seleznev, Supercond. Sci. Technol. 31, 035011 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    E. S. Tikhonov, M. Y. Melnikov, D. V. Shovkun, L. Sorba, G. Biasiol, and V. S. Khrapai, Phys. Rev. B 90, 161405 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    S. U. Piatrusha, L. V. Ginzburg, E. S. Tikhonov, D. V. Shovkun, G. Koblmüller, A. V. Bubis, A. K. Grebenko, A. G. Nasibulin, and V. S. Khrapai, JETP Lett. 108, 71 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    T. Elo, P. Lähteenmäki, D. Golubev, A. Savin, K. Arutyunov, and P. Hakonen, J. Low Temp. Phys. 189, 204 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. M. Baeva
    • 1
    • 2
  • N. A. Titova
    • 2
  • A. I. Kardakova
    • 2
    • 3
  • S. U. Piatrusha
    • 1
  • V. S. Khrapai
    • 1
    • 2
    Email author
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Moscow State University of EducationMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations