Advertisement

Gluon Evolution for the Berger-Block-Tan Form of the Structure Function F2

  • A. V. KotikovEmail author
Article
  • 2 Downloads

Abstract

We present a nonlinear modification of the evolution of the gluon density, obtained at small x from the Berger-Block-Tan form of the deep inelastic structure function F2 in the leading order of perturbation theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Cooper-Sarkar, R. C. E. Devenish, and A. De Roeck, Int. J. Mod. Phys. A 13, 3385 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Kotikov, Phys. Part. Nucl. 38, 1 (2007).CrossRefGoogle Scholar
  3. 3.
    A. V. Kotikov and G. Parente, Nucl. Phys. B 549, 242 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    A. Y. Illarionov, A. V. Kotikov, and G. Parente Bermudez, Phys. Part. Nucl. 39, 307 (2008).CrossRefGoogle Scholar
  5. 5.
    G. Cvetic, A. Y. Illarionov, B. A. Kniehl, and A. V. Kotikov, Phys. Lett. B 679, 350 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Kotikov and B. G. Shaikhatdenov, Phys. Part. Nucl. 44, 543 (2013).CrossRefGoogle Scholar
  7. 7.
    A. V. Kotikov and B. G. Shaikhatdenov, Phys. Atom. Nucl. 78(4), 525 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Kotikov and B. G. Shaikhatdenov, Phys. Part. Nucl. 48(5), 829 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Froissart, Phys. Rev. 123, 1053 (1961).ADSCrossRefGoogle Scholar
  10. 10.
    E. L. Berger, M. M. Block, and C. I. Tan, Phys. Rev. Lett. 98, 242001 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    M. M. Block, E. L. Berger, and C. I. Tan, Phys. Rev. Lett. 97, 252003 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    R. Fiore, L. L. Jenkovszky, A. V. Kotikov, F. Paccanoni, A. Papa, and E. Predazzi, Phys. Rev. D 71, 033002 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    R. Fiore, L. L. Jenkovszky, A. Kotikov, F. Paccanoni, A. Papa, and E. Predazzi, Phys. Rev. D 68, 093010 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    R. Fiore, L. L. Jenkovszky, A. V. Kotikov, F. Paccanoni, and A. Papa, Phys. Rev. D 73, 053012 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    A. Y. Illarionov, B. A. Kniehl, and A. V. Kotikov, Phys. Rev. Lett. 106, 231802 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. M. Block, L. Durand, and P. Ha, Phys. Rev. D 89(9), 094027 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Kotikov, JETP Lett. 59, 667 (1994).ADSGoogle Scholar
  18. 18.
    A. V. Kotikov and G. Parente, Phys. Lett. B 379, 195 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Kotikov, JETP 80, 979 (1995).ADSGoogle Scholar
  20. 20.
    A. V. Kotikov and G. Parente, Mod. Phys. Lett. A 12, 963 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Kotikov and G. Parente, JETP 85, 17 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    N. Y. Chernikova and A. V. Kotikov, JETP Lett. 105, 223 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Kotikov, Phys. Atom. Nucl. 80(3), 572 (2017).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. P. Kaptari, A. V. Kotikov, N. Y. Chernikova, and P. Zhang, JETP Lett. 109(5), 281 (2019).ADSCrossRefGoogle Scholar
  25. 25.
    L. P. Kaptari, A. V. Kotikov, N. Y. Chernikova, and P. Zhang, Phys. Rev. D 99(9), 096019 (2019).ADSCrossRefGoogle Scholar
  26. 26.
    V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).Google Scholar
  27. 27.
    L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975).Google Scholar
  28. 28.
    G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).ADSCrossRefGoogle Scholar
  29. 29.
    Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).ADSGoogle Scholar
  30. 30.
    L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    A. H. Mueller and J. W. Qiu, Nucl. Phys. B 268, 427 (1986).ADSCrossRefGoogle Scholar
  32. 32.
    A. H. Mueller, Nucl. Phys. B 335, 115 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    W. Zhu, Nucl. Phys. B 551, 245 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    W. Zhu and J. H. Ruan, Nucl. Phys. B 559, 378 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    W. Zhu, J. H. Ruan, J. F. Yang, and Z. Q. Shen, Phys. Rev. D 68, 094015 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    A. V. Kotikov, Phys. Rev. D 49, 5746 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    A. V. Kotikov, Phys. Atom. Nucl. 57, 133 (1994).ADSGoogle Scholar
  38. 38.
    M. M. Block, L. Durand, P. Ha, and D. W. McKay, Phys. Rev. D 84, 094010 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    F. D. Aaron, H. Abramowicz, I. Abt et al. (H1 and ZEUS Collaborations), JHEP 1001, 109 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze, Lett. Nuovo Cim. 7, 719 (1973).CrossRefGoogle Scholar
  41. 41.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    S. J. Brodsky, J. R. Ellis, E. Gardi, M. Karliner, and M. A. Samuel, Phys. Rev. D 56, 6980 (1997).ADSCrossRefGoogle Scholar
  43. 43.
    V. Bertone, R. Gauld, and J. Rojo, JHEP 1901, 217 (2019).ADSCrossRefGoogle Scholar
  44. 44.
    E. M. Levin and M. G. Ryskin, Phys. Rep. 189, 267 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.II Institut fur Theoretische PhysikUniversitat HamburgHamburgGermany
  2. 2.Theoretical Physics of the Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations