Skip to main content
Log in

Bound States in the Continuum in Magnetophotonic Metasurfaces

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We analyze the enhancement mechanisms of magneto-optical effects in all-dielectric metasurfaces caused by the bound state in the continuum resonance. In a structure under study, a square lattice of bismuth substituted yttrium iron garnet nanodisks with an air hole displaced away from the disk axis, magneto-optical polarization and intensity effects reach 0.7° and 22%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science (Washington, DC, U. S.) 354 (6314), aag2472 (2016).

    Article  Google Scholar 

  2. E. V. Melik-Gaykazyan, K. L. Koshelev, J. Choi, S. S. Kruk, H. Park, A. A. Fedyanin, and Y. S. Kivshar, JETP Lett. 109, 131 (2019).

    Article  ADS  Google Scholar 

  3. N. Yu and F. Capasso, Nat. Mater. 13, 139 (2014).

    Article  ADS  Google Scholar 

  4. Y. Lee, M. Park, S. Kim, J. H. Shin, C. Moon, J. Y. Hwang, J. Choi, H. Park, H. Kim, and J. E. Jang, ACS Photon. 4, 1954 (2017).

    Article  Google Scholar 

  5. A. A. Grunin, I. R. Mukha, A. V. Chetvertukhin, and A. A. Fedyanin, J. Magn. Magn. Mater. 415, 72 (2016).

    Article  ADS  Google Scholar 

  6. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, Nano Lett. 8, 3983 (2008).

    Article  ADS  Google Scholar 

  7. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).

    Article  ADS  Google Scholar 

  8. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nat. Commun. 5, 5753 (2014).

    Article  ADS  Google Scholar 

  9. V. R. Tuz, V. V. Khardikov, A. S. Kupriianov, K. L. Domina, S. Xu, H. Wang, and H. Sun, Opt. Express 26, 2905 (2018).

    Article  ADS  Google Scholar 

  10. S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, ACS Photon. 3, 2362 (2016).

    Article  Google Scholar 

  11. K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, JETP Lett. 110, 25 (2019).

    Article  ADS  Google Scholar 

  12. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, Phys. Rev. Lett. 121, 193903 (2018).

    Article  ADS  Google Scholar 

  13. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, Phys. Rev. Lett. 107, 183901 (2011).

    Article  ADS  Google Scholar 

  14. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, ACS Photon. 4, 2390 (2017).

    Article  Google Scholar 

  15. A. I. Musorin, M. G. Barsukova, A. S. Shorokhov, B. S. Luk’yanchuk, and A. A. Fedyanin, J. Magn. Magn. Mater. 459, 165 (2018).

    Article  ADS  Google Scholar 

  16. M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, APL Photon. 4, 016102 (2019).

    Article  ADS  Google Scholar 

  17. A. I. Musorin, A. V. Chetvertukhin, T. V. Dolgova, H. Uchida, M. Inoue, B. S. Luk’yanchuk, and A. A. Fedyanin, Appl. Phys. Lett. 115, 115102 (2019).

    Article  Google Scholar 

  18. G. Y. Chen, W. X. Zhang, and X. D. Zhang, Opt. Express 27, 16449 (2019).

    Article  ADS  Google Scholar 

  19. M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, Nat. Commun. 6, 7072 (2015).

    Article  ADS  Google Scholar 

  20. N. Maccaferri, X. Inchausti, A. García-Martín, J. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, ACS Photon. 2, 1769 (2015).

    Article  Google Scholar 

  21. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, Phys. Rev. X 3, 041019 (2013).

    Google Scholar 

  22. D. Floess, M. Hentschel, T. Weiss, H. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, Phys. Rev. X 7, 021048 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Musorin.

Additional information

We are grateful to B.S. Luk’yanchuk for fruitful discussion. The work is supported by Ministry of Science and Higher Education (no. 14.W03.008.31, simulation of transmittance spectra), Russian Science Foundation (no. 19-72-00168, simulation of polarization magneto-optical effect) and Russian Foundation for Basic Research (no. 18-32-00225, simulation of intensity magneto-optical effect). Part of the research is performed under the support of MSU Quantum Technology Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyak, A.M., Barsukova, M.G., Shorokhov, A.S. et al. Bound States in the Continuum in Magnetophotonic Metasurfaces. Jetp Lett. 111, 46–49 (2020). https://doi.org/10.1134/S0021364020010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020010105

Navigation