Advertisement

GLSM for Berglund-Hübsch Type Calabi-Yau Manifolds

  • K. AleshkinEmail author
  • A. BelavinEmail author
Article
  • 2 Downloads

Abstract

In this note we briefly present the results of our computation of special Kähler geometry for polynomial deformations of Berglund-Hübsch type Calabi-Yau manifolds. We also build mirror symmetric Gauge Linear Sigma Model and check that its partition function computed by supersymmetric localization coincides with exponent of the Kähler potential of the special metric.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, Nucl. Phys. B 359, 21 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    K. Aleshkin and A. Belavin, J. Phys. A 51(5), 055403 (2018); arXiv:1706.05342.ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Aleshkin and A. Belavin, Phys. Lett. B 776, 139 (2018); arXiv:1708.08362.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Aleshkin and A. Belavin, JHEP 03, 018 (2018); arXiv:1710.11609.ADSCrossRefGoogle Scholar
  5. 5.
    K. Aleshkin and A. Belavin, JETP Lett. 108(10), 705 (2018); arXiv:1806.02772 [hep-th].ADSCrossRefGoogle Scholar
  6. 6.
    S. Katmadas and A. Tomasiello, JHEP 1804, 048 (2018); arXiv:1712.06608 [hep-th].ADSCrossRefGoogle Scholar
  7. 7.
    R. Blumenhagen, D. Kläwer, L. Schlechter, and F. Wolf, JHEP 1806, 052 (2018); arXiv:1803.04989 [hep-th].ADSCrossRefGoogle Scholar
  8. 8.
    R. Blumenhagen, PoS CORFU 2017, 175 (2018); arXiv:1804.10504.Google Scholar
  9. 9.
    M. Kreuzer and H. Skarke, Commun. Math. Phys. 150, 137 (1992); arXiv:hep-th/9202039.ADSCrossRefGoogle Scholar
  10. 10.
    P. Berglund and T. Hubsch, SciPost Phys. 4(2), 009 (2018); arXiv:1611.10300.ADSCrossRefGoogle Scholar
  11. 11.
    M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, PhD thesis, University of Michigan, Jan. (2010).Google Scholar
  12. 12.
    E. Witten, Nucl. Phys. B 403, 159 (1993); hep-th/9301042.ADSCrossRefGoogle Scholar
  13. 13.
    F. Benini and S. Cremonesi, Commun. Math. Phys. 334(3), 1483 (2015); arXiv:1206.2356.ADSCrossRefGoogle Scholar
  14. 14.
    N. Doroud, J. Gomis, B. Le Floch, and S. Lee, JHEP 05, 093 (2013); arXiv:1206.2606.ADSCrossRefGoogle Scholar
  15. 15.
    H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, Commun. Math. Phys. 325, 1139 (2014); arXiv:1208.6244.ADSCrossRefGoogle Scholar
  16. 16.
    K. Aleshkin, A. Belavin, and A. Litvinov, Pis’ma v ZhETF 108(10), 725 (2018) [JETP Lett. 108(10), 710 (2018)].Google Scholar
  17. 17.
    K. Aleshkin, A. Belavin, and A. Litvinov, JKLMR conjecture and Batyrev construction, Journal of Statistical Mechanics: Theory and Experiment2019 (mar. 2019), 034003.MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. V. Batyrev, J. Alg. Geom. 3, 493 (1994); arXiv:alggeom/9310003.Google Scholar
  19. 19.
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, AMS, Clay Mathematical Institute (2003), p. 101.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.+Columbia University, Department of MathematicsNew YorkUSA
  2. 2.L. D. Landau Institute for Theoretical PhysicsChernogolovkaRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  4. 4.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations