Skip to main content
Log in

Instability of a Low-Frequency Gravity—Capillary Wave under Stationary Ultrasonic Irradiation

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A new type of instability of standing gravity—capillary waves has been detected under the irradiation of the liquid surface by a continuous plane ultrasonic beam with a constant amplitude. At an intensity of 1.03-MHz ultrasound above a certain threshold, the excitation of one of the eigenmodes of gravity—capillary waves at a frequency of 6.56 Hz has been observed. The time of establishment of the stationary amplitude of oscillations of the surface significantly exceeds the intrinsic time of relaxation of the mode and decreases with an increase in the threshold excess. The scenario of development of instability is similar to an inverse energy cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Benjamin and F. Ursell, Proc. R. Soc. London, Ser. A 225(1163), 505 (1954).

    Article  ADS  Google Scholar 

  2. K. Krishna and L. S. Tuckerman, J. Fluid Mech. 279, 49 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. S. Goldobin, A. V. Pimenova, K. V. Kovalevskaya, D. V. Lyubimov, and T. P. Lyubimova, Phys. Rev. E 91, 053010 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. V. Sorokin, Sov. Phys. Acoust. 3, 281 (1957).

    Google Scholar 

  5. B. Avvaru, M. N. Patil, P. R. Gogate, and A. B. Pandit, Ultrasonics 44, 146 (2006).

    Article  Google Scholar 

  6. J. Xu and D. Attinger, Phys. Fluids 19, 108107 (2007).

    Article  ADS  Google Scholar 

  7. V. Preobrazhensky, V. Aleshin, and P. Pernod, Phys. Wave Phenom. 26, 234 (2018).

    Article  ADS  Google Scholar 

  8. N. Francois, H. Xia, H. Punzmann, and M. Shats, Phys. Rev. Lett. 110, 194501 (2013).

    Article  ADS  Google Scholar 

  9. S. V. Filatov, D. A. Khramov, and A. A. Levchenko, JETP Lett. 106, 330 (2017).

    Article  ADS  Google Scholar 

  10. S. V. Filatov, S. A. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2016).

    Article  ADS  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  12. O. A. Sapozhnikov and M. A. Smagin, Acoust. Phys. 61, 181 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-52-16001) and by the Presidium of the Russian Academy of Sciences (program no. 5 “Photonic Technologies in Probing of Inhomogeneous Media and Biological Objects”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Krutyansky.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 10, pp. 666–670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutyansky, L.M., Preobrazhensky, V.L. & Pernod, P. Instability of a Low-Frequency Gravity—Capillary Wave under Stationary Ultrasonic Irradiation. Jetp Lett. 110, 667–671 (2019). https://doi.org/10.1134/S0021364019220089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019220089

Navigation