Skip to main content
Log in

Planar Architecture for Studying a Fluxonium Qubit

  • Quantum Informatics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The spectral and temporal characteristics of a fluxonium qubit coupled to a coplanar resonator on a chip have been experimentally studied. The system has been implemented as a planar integral electric circuit, where the fluxonium qubit itself consists of a tunnel Josephson junction with a small area shunted by a high inductance of a series of Josephson junctions with larger areas. To analyze the experimental data, an extended model of the fluxonium qubit capacitively coupled to the resonator has been proposed, and the structure of the energy levels has been obtained by full diagonalization of the Hamiltonian of the system. Numerical predictions of the model allow interpreting the results of two-tone spectroscopy obtained at various external magnetic fluxes in a wide frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Vincenzo, Quantum Information Processing (Forschungszentrum, Julich, 2013), p. A4.

    Google Scholar 

  2. Y. Wang, Y. Li, Z. Yin, and B. Zeng, Quantum Inform. 4, 1 (2018).

    Article  Google Scholar 

  3. https://www.rigetti.com/news/publications.

  4. W. D. Oliver and P. B. Welander, MRS Bull. 38, 816 (2013).

    Article  Google Scholar 

  5. Z. L. Xiang, S. Ashhab, J.Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    Article  ADS  Google Scholar 

  6. A. M. Zagoskin, Quantum Engineering: Theory and Design of Quantum Coherent Structures (Cambridge Univ. Press, Cambridge, 2011).

    Book  Google Scholar 

  7. C. Muller, J.H. Cole, and J. Lisenfeld, Rep. Prog. Phys. (2019, in press).

    Google Scholar 

  8. A. Dunsworth, A. Megrant, C. Quintana, et al., Appl. Phys. Lett. 111, 022601 (2017).

    Article  ADS  Google Scholar 

  9. C. M. Quintana, A. Megrant, Z. Chen, et al., Appl. Phys. Lett. 105, 062601 (2014).

    Article  ADS  Google Scholar 

  10. I. A. Rodionov, A.S. Baburin, A.R. Gabidullin, S.S. Maklakov, S. Peters, I.A. Ryzhikov, and A.V. Andriyash, Sci. Rep. 9, 12232 (2019).

    Article  ADS  Google Scholar 

  11. https://www.ibm.com/blogs/research/2017/11/thefuture-is-quantum/.

  12. R. Barends, A. Shabani, L. Lamata, et al., Nature (London, U.K.) 534, 222 (2016).

    Article  ADS  Google Scholar 

  13. A. Nersisyan, S. Poletto, N. Alidoust, R. Manenti, R. Renzas, C.-V. Bui, K. Vu, T. Whyland, Y. Mohan, E.A. Sete, S. Stanwyck, A. Bestwick, and M. Reagor, arXiv:1901.08042 (2019).

    Google Scholar 

  14. V. E. Manucharyan, PhD Thesis (Yale Univ., New Haven, 2012).

    Google Scholar 

  15. N. A. Masluk, PhD Thesis (Yale Univ., New Haven, 2012).

    Google Scholar 

  16. V. E. Manucharyan, J. Koch, L.I. Glazman, and M.H. Devoret, Science (Washington, DC, U. S.) 326, 113 (2009).

    Article  ADS  Google Scholar 

  17. T. M. Hazard, A. Gyenis, A.D. Paolo, A.T. Asfaw, S.A. Lyon, A. Blais, and A.A. Houck, Phys. Rev. Lett. 122, 010504 (2019).

    Article  ADS  Google Scholar 

  18. N. Maleeva, L. Grunhaupt, T. Klein, F. Levy-Bertrand, O. Dupre, M. Calvo, F. Valenti, P. Winkel, F. Friedrich, W. Wernsdorfer, A.V. Ustinov, H. Rotzinger, A. Monfardini, M.V. Fistul, and I.M. Pop, Nat. Commun. 9, 3889 (2018).

    Article  ADS  Google Scholar 

  19. V. E. Manucharyan, N.A. Masluk, A. Kamal, J. Koch, L.I. Glazman, and M.H. Devoret, Phys. Rev. B 85, 024521 (2012).

    Article  ADS  Google Scholar 

  20. I.M. Pop, K. Geerlings, G. Catelani, R.J. Schoelkopf, L.I. Glazman, and M.H. Devoret, Nature (London, U.K.) 508, 369 (2014).

    Article  ADS  Google Scholar 

  21. U. Vool and M. Devoret, Int. J. Circ. Theor. Appl. 45, 897 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The samples were fabricated at the Nanofabrication Facility Functional Micro/Nanosystems (ID 74300), Bauman Moscow State Technical University

Funding

The development of a theoretical model to describe the fluxonium qubit coupled to the coplanar resonator, as well as the development of layer-by-layer geometry and fabrication of experimental fluxonium samples, was supported by the Russian Science Foundation (project no. 19-42-04137). Experimental studies of the spectral and temporal characteristics of fluxonium qubits were supported by the Ministry of Science and Higher Education of the Russian Federation (project no. K2A-2018-048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Moskalenko.

Additional information

Supplementary materials are available for this article at https://doi.org/10.1134/S0021364019200074 and are accessible for authorized users.

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 8, pp. 569–574.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalenko, I.N., Besedin, I.S., Tsitsilin, I.A. et al. Planar Architecture for Studying a Fluxonium Qubit. Jetp Lett. 110, 574–579 (2019). https://doi.org/10.1134/S0021364019200074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019200074

Navigation