Advertisement

JETP Letters

, Volume 110, Issue 8, pp 523–528 | Cite as

Regular Bouncing Solutions, Energy Conditions, and the Brans—Dicke Theory

  • O. GalkinaEmail author
  • J. C. FabrisEmail author
  • F. T. FalcianoEmail author
  • N. Pinto-NetoEmail author
Astrophysics and Cosmology
  • 19 Downloads

Abstract

In general, to avoid a singularity in cosmological models involves the introduction of exotic kind of matter fields, for example, a scalar field with negative energy density. In order to have a bouncing solution in classical General Relativity, violation of the energy conditions is required. In this work, we discuss a case of the bouncing solution in the Brans-Dicke theory with radiative fluid that obeys the energy conditions, and with no ghosts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), by Fundação de Apoio à Pesquisa e Inovação do Espírito Santo (FAPES, Brazil), and in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

References

  1. 1.
    L. E. Gurevich, A. M. Finkelstein, and V. A. Ruban, Astrophys. Space Sci. 22, 231 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    J. D. Barrow and P. Parsons, Phys. Rev. D 55, 1906 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    T. Clifton and J. D. Barrow, Phys. Rev. D 73, 104022 (2006).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. P. Mimoso and D. Wands, Phys. Rev. D 52, 5612 (1995).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Rossi, M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky, and C. Umiltà, arXiv:1906.10218 [astro-ph] (2019).Google Scholar
  7. 7.
    G. Brando, J. C. Fabris, F. T. Falciano, and O. Galkina, Int. J. Mod. Phys. D 28, 1950156 (2019).ADSCrossRefGoogle Scholar
  8. 8.
    G. Brando, F. T. Falciano, and L. F. Guimarães, Phys. Rev. D 98, 044027 (2018).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Paliathanasis, M. Tsamparlis, S. Basilakos, and J. D. Barrow, Phys. Rev. D 93, 043528 (2016).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. A. Tretyakova, B. N. Latosh, and S. O. Alexeyev, Class. Quantum Grav. 32, 185002 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. Faraoni, J. Côté, and A. Giusti, arXiv: 1906.05957[gr-qc] (2019).Google Scholar
  12. 12.
    E. Frion and C. R. Almeida, Phys. Rev. D 99, 023524 (2019).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Kobayashi, Rep. Prog. Phys. 82, 086901 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    C. M. Will, Theory and Experiment in Gravitational Physics, 2nd ed. (Cambridge Univ. Press, Cambridge, 2018).Google Scholar
  15. 15.
    M. J. Duff, R. R. Khuri, and J. X. Lu, Phys. Rep. 259, 213 (1995).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    K. A. Bronnikov, J. Math. Phys. 43, 6096 (2002).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. A. Starobinsky, Sov. Astron. Lett. 7, 36 (1981).ADSGoogle Scholar
  18. 18.
    L. Parker and S. A. Fulling, Phys. Rev. D 7, 2357 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Starobinsky, Sov. Astron. Lett. 4, 82 (1978).ADSGoogle Scholar
  20. 20.
    A. Yu. Kamenshchik, I. M. Khalatnikov, and A. V. Toporensky, Int. J. Mod. Phys. D 6, 673 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    A. Yu. Kamenshchik, I. M. Khalatnikov, S. V. Savchenko, and A. V. Toporensky, Phys. Rev. D 59, 1235 (1999).Google Scholar
  22. 22.
    A. Yu. Kamenshchik, E. O. Pozdeeva, S. Vernov, A. Tronconi, and G. Venturi, Phys. Rev. D 94, 063510 (2016).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. P. Baptista, J. C. Fabris, and S. V. B. Gonçalves, Astrophys. Space Sci. 246, 315 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    A. B. Batista, J. C. Fabris, and J. P. Baptista, C.R. Acad. Sci. 309, 791 (1989).Google Scholar
  25. 25.
    S. D. P. Vitenti and N. Pinto-Neto, Phys. Rev. D 85, 023524 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em FísicaCCE-Universidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Núcleo Cosmo-ufes & Departamento de FísicaUniversidade Federal do Espírito SantoVitóriaBrazil
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.CBPF - Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations