Skip to main content
Log in

Scaling Relations for Temperature Dependences of the Surface Self-Diffusion Coefficient in Crystallized Molecular Glasses

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Crystallization kinetics has features that are universal and independent of the type of crystallized system. The possibility of using scaling relations to describe the temperature dependences of the surface self-diffusion coefficient Ds, which is one of the key characteristics of crystallization kinetics, has been demonstrated in application to various crystallized molecular glasses. It has been shown that the surface self-diffusion coefficient Ds as a function of the dimensionless temperature is reproduced by a power law and is universally scaled for all considered systems. The analysis of experimental data has revealed a correlation between the crystallization kinetic characteristics, index of fragility, and criterion of the glass-forming ability of a liquid. It has been shown that this correlation can be obtained within the generalized Einstein–Stokes relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhang, C. W. Brian, and L. Yu, J. Phys. Chem. B 119, 5071 (2015).

    Article  Google Scholar 

  2. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  3. L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).

    Article  ADS  Google Scholar 

  4. C. Huang, S. Ruan, T. Cai, and L. Yu, J. Phys. Chem. B 121, 9463 (2017).

    Article  Google Scholar 

  5. Y. Sun, L. Zhu, T. Wu, T. Cai, E. M. Gunn, and L. Yu, AAPS J. 14, 380 (2012).

    Article  Google Scholar 

  6. M. Hasebe, D. Musumeci, C. T. Powell, T. Cai, E. Gunn, L. Zhu, and L. Yu, J. Phys. Chem. B 118, 7638 (2014).

    Article  Google Scholar 

  7. W. W. Mullins, J. Appl. Phys. 30, 77 (1959).

    Article  ADS  Google Scholar 

  8. T. V. Tropin, J. W. Schmelzer, and V. L. Aksenov, Phys. Usp. 59, 42 (2016).

    Article  ADS  Google Scholar 

  9. A. V. Mokshin and B. N. Galimzyanov, Phys. Chem. Chem. Phys. 19, 11340 (2007).

    Article  Google Scholar 

  10. W. Zhang and L. Yu, Macromolecules 49, 731 (2016).

    Article  ADS  Google Scholar 

  11. A. V. Mokshin and B. N. Galimzyanov, J. Chem. Phys. 142, 104502 (2015).

    Article  ADS  Google Scholar 

  12. S. Miriglan and K. S. Schweizer, J. Chem. Phys. 140, 194507 (2014).

    Article  ADS  Google Scholar 

  13. P. G. Santangelo and C. M. Roland, Macromolecules 31, 4581 (1988).

    Article  ADS  Google Scholar 

  14. S. F. Swallen and M. D. Ediger, Soft Matter 7, 10339 (2011).

    Article  ADS  Google Scholar 

  15. J. A. Baird, B. van Eerdenbrugh, and L. S. Taylor, J. Pharm. Sci. 99, 3787 (2010).

    Article  Google Scholar 

  16. K. J. Crowley and G. Zografi, Therm. Acta 380, 79 (2001).

    Article  Google Scholar 

  17. L.-M. Wang, C. A. Angell, and R. Richert, J. Chem. Phys. 125, 074505 (2006).

    Article  ADS  Google Scholar 

  18. V. V. Brazhkin, Phys. Usp. 62, 623 (2019).

    Article  ADS  Google Scholar 

  19. S. Wei, Z. Evenson, M. Stolpe, P. Lucas, and C. A. Angell, Sci. Adv. 4, eaat8632 (2018).

    Article  ADS  Google Scholar 

  20. L. Costigliola, D. M. Heyes, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 150, 021101 (2019).

    Article  ADS  Google Scholar 

  21. C. A. Angell, Science (Washington, DC, U. S.) 267, 1924 (1995).

    Article  ADS  Google Scholar 

  22. R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, Phys. Rev. Lett. 110, 025701 (2013).

    Article  ADS  Google Scholar 

  23. D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 120 (1961).

    Article  ADS  Google Scholar 

  24. D. V. Louzguine-Luzgin, R. Belosludov, M. Saito, Y. Kawazoe, and A. Inoue, J. Appl. Phys. 104, 123529 (2008).

    Article  ADS  Google Scholar 

  25. K. R. Harris, J. Chem. Phys. 131, 054503 (2009).

    Article  ADS  Google Scholar 

  26. L. Andreozzi, M. Bagnoli, M. Faetti, and M. Giordano, J. Non-Cryst. Solids 303, 262 (2002).

    Article  ADS  Google Scholar 

  27. S. A. Dzuba, J. Chem. Phys. 134, 107101 (2011).

    Article  ADS  Google Scholar 

  28. A. F. Kozmidis-Petrović, Int. J. Appl. Glass Sci. 5, 193 (2014).

    Article  Google Scholar 

  29. V. N. Novikov, Chem. Phys. Lett. 659, 133 (2016).

    Article  ADS  Google Scholar 

  30. M. E. Blodgett, T. Egami, Z. Nussinov, and K. F. Kelton, Sci. Rep. 5, 13837 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. V.N. Ryzhov (Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow) and Acad. V.V. Brazhkin (Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow) for valuable advice and discussions of some results of this work.

Funding

This work was supported by the Russian Science Foundation (project no. 19-12-00022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Mokshin, B. N. Galimzyanov or D. T. Yarullin.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 7, pp. 498–504.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V., Galimzyanov, B.N. & Yarullin, D.T. Scaling Relations for Temperature Dependences of the Surface Self-Diffusion Coefficient in Crystallized Molecular Glasses. Jetp Lett. 110, 511–516 (2019). https://doi.org/10.1134/S002136401919010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401919010X

Navigation