Skip to main content
Log in

Electroluminescence of a Polymer Film with a Polymer/Polymer Interface

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of a two-dimensional quantum-confined structure formed at a polymer/polymer interface on the radiative recombination of excitons (i.e., electroluminescence) is investigated. It is shown that the implementation of such a structure in a polymer film leads to an increase in the emission intensity by more than two orders of magnitude and a twofold decrease in the voltage threshold for double injection. It is established that the polymer/polymer interface serves as the front of exciton recombination, and its position inside the film affects the electroluminescence intensity. The position of the two-dimensional structure within the polymer film corresponding to the highest intensity of radiative recombination is a function of the ratio of electron and hole mobilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Baldo, M. E. Thomson, and R. S. Forrest, Nature (London, U.K.) 403, 750 (2000).

    Article  ADS  Google Scholar 

  2. M. A. Baldo, C. Adachi, and R. S. Forrest, Phys. Rev. B 62, 10967 (2000).

    Article  ADS  Google Scholar 

  3. V. M. Agranovich, Excitations in Organic Solids (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  4. B. A. Borisov, S. N. Nikishin, V. V. Kuryatkov, V. I. Ku-chinskii, M. Holtz, and H. Temkin, Semiconductors 40, 454 (2006).

    Article  ADS  Google Scholar 

  5. Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhan-gand, and G. Donget, Appl. Phys. Lett. 81, 3540 (2002).

    Article  ADS  Google Scholar 

  6. H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nat. Mater. 7, 574 (2008).

    Article  ADS  Google Scholar 

  7. F. Zhu, H. Wang, D. Song, K. Lou, and D. Yanet, Appl. Phys. Lett. 93, 103308 (2008).

    Article  ADS  Google Scholar 

  8. R. M. Gadiev, A. N. Lachinov, V. M. Kornilov, R. B. Sa-likhov, R. G. Rakhmeev, and A. R. Yusupov, JETP Lett. 90, 726 (2009).

    Article  ADS  Google Scholar 

  9. T. Sakanoue, T. Irie, and C. Adachi, J. Appl. Phys. 105, 114502 (2009).

    Article  ADS  Google Scholar 

  10. A. N. Lachinov, A. R. Tameev, A. R. Yusupov, and A. V. Vannikov, Russ. J. Electrochem. 48, 316 (2012).

    Article  Google Scholar 

  11. V. R. Nikitenko, A. R. Tameev, and A. V. Vannikov, Org. Electron. 12, 589 (2011).

    Article  Google Scholar 

  12. R. M. Gadiev, A. N. Lachinov, V. M. Kornilov, R. B. Salikhov, R. G. Rakhmeev, and A. R. Yusupov, Appl. Phys. Lett. 98, 173305 (2011).

    Article  ADS  Google Scholar 

  13. V. A. Antipin, I. L. Valeeva, and A. N. Lachinov, JETP Lett. 55, 545 (1992).

    ADS  Google Scholar 

  14. S. N. Salazkin, Polymer Sci., Ser. B 46, 203 (2004).

    Google Scholar 

  15. N. Reyren, S. Thie, A. D. Caviglia, L. Fitting Kourkou-tis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science (Washington, DC, U. S.) 317, 1196 (2007).

    Article  ADS  Google Scholar 

  16. R. B. Salikhov, A. N. Lachinov, R. G. Rakhmeyev, and R. M. Gadiev, Mol. Cryst. Liq. Cryst. 535, 74 (2011).

    Article  Google Scholar 

  17. R. M. Gadiev, A. N. Lachinov, A. F. Galiev, L. R. Kalimullina, and I. R. Nabiullin, JETP Lett. 100, 251 (2014).

    Article  ADS  Google Scholar 

  18. R. M. Gadiev, A. N. Lachinov, D. D. Karamov, D. A. Kiselev, and V. M. Kornilov, J. Exp. Theor. Phys. 123, 149 (2016).

    Article  ADS  Google Scholar 

  19. A. R. Tameev, R. G. Rakhmeev, V. R. Nikitenko, R. B. Salikhov, A. A. Bunakov, A. N. Lachinov, and A. V. Vannikov, Phys. Solid State 53, 195 (2011).

    Article  ADS  Google Scholar 

  20. A. R. Tameev, A. N. Lachinov, R. B. Salikhov, A. A. Bunakov, and A. V. Vannikov, Russ. J. Phys. Chem. A 79, 2025 (2005).

    Google Scholar 

  21. B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 87, 1974 (2000).

    Article  ADS  Google Scholar 

  22. V. R. Nikitenko, Non-stationary Processes of Transfer and Recombination of Charge Carriers in Thin Layers of Organic Materials (NIYaU MIFI, Moscow, 2011), Chap. 7, p. 316 [in Russian].

  23. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch, and J. Daubet, Adv. Mater. 7, 551 (1995).

    Article  Google Scholar 

  24. J. A. Yoon, Y. H. Kim, N. H. Kim, S. I. Yoo, S. Y. Lee, F. R. Zhu, and W. Y. Kimet, Nanoscale Res. Lett. 9, 191 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. S.N. Salazkin for courteously providing the polymer samples investigated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lachinov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 7, pp. 437-442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lezhnev, S.K., Yusupov, A.R., Galiev, A.F. et al. Electroluminescence of a Polymer Film with a Polymer/Polymer Interface. Jetp Lett. 110, 447–451 (2019). https://doi.org/10.1134/S0021364019190093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019190093

Navigation