Skip to main content
Log in

Mutual Enhancement of Brunel Harmonics

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A mechanism of a significant increase in the yield of Brunel harmonics, which are the lowest odd harmonics generated in a plasma in the process of tunnel ionization of atoms and molecules by an intense laser pulse, has been proposed and analyzed. This mechanism is based on the mutual enhancement of harmonics at the parametric interaction with the field at the fundamental frequency caused by the degenerate ionization-induced multiwave mixing. The results of analytical and numerical calculations show that this can increase the intensities of the generated harmonics by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L’Huillier, K. J. Schafer, and K. C. Kulander, J. Phys. B: At. Mol. Opt. Phys. 24, 3315 (1991).

    Article  ADS  Google Scholar 

  2. V. V. Strelkov, V. T. Platonenko, A. F. Sterzhantov, and M. Yu. Ryabikin, Phys. Usp. 59, 425 (2016).

    Article  Google Scholar 

  3. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  4. J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, Phys. Rev. A 82, 023401 (2010).

    Article  ADS  Google Scholar 

  5. W.-H. Xiong, J.-W. Geng, J.-Y. Tang, L.-Y. Peng, and Q. Gong, Phys. Rev. Lett. 112, 233001 (2014).

    Article  ADS  Google Scholar 

  6. F. Brunel, J. Opt. Soc. Am. B 7, 521 (1990).

    Article  ADS  Google Scholar 

  7. N. E. Andreev, M. E. Veisman, and M. V. Chegotov, J. Exp. Theor. Phys. 97, 554 (2003).

    Article  ADS  Google Scholar 

  8. E. E. Serebryannikov and A. M. Zheltikov, Phys. Rev. Lett. 113, 043901 (2014).

    Article  ADS  Google Scholar 

  9. U. Sapaev, A. Husakou, and J. Herrmann, Opt. Express 21, 25582 (2013).

    Article  ADS  Google Scholar 

  10. M. Chini, X. Wang, Y. Cheng, Y. Wu, D. Zhao, D. A. Telnov, S.-I Chu, and Z. Chang, Sci. Rep. 3, 1105 (2013).

    Article  ADS  Google Scholar 

  11. H. Tao, T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van Tilborg, Y. Liu, R. W. Falcone, A. Belkacem, and T. J. Martinez, J. Chem. Phys. 134, 244306 (2011).

    Article  ADS  Google Scholar 

  12. K. Schiessl, E. Persson, A. Scrinzi, and J. Burgdörfer, Phys. Rev. A 74, 053412 (2006).

    Article  ADS  Google Scholar 

  13. S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, Phys. Rev. A 81, 063417 (2010).

    Article  ADS  Google Scholar 

  14. G. Lambert, A. Andreev, J. Gautier, L. Giannessi, V. Malka, A. Petralia, S. Sebban, S. Stremoukhov, F. Tissandier, B. Vodungbo, and P. Zeitoun, Sci. Rep. 5, 7786 (2015).

    Article  ADS  Google Scholar 

  15. Q.-L. Guo, P.-C. Li, X.-X. Zhou, and S.-I Chu, Opt. Commun. 410, 262 (2018).

    Article  ADS  Google Scholar 

  16. V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, Phys. Rev. Lett. 117, 035003 (2016).

    Article  ADS  Google Scholar 

  17. A. A. Silaev, V. A. Kostin, I. D. Laryushin, and N. V. Vvedenskii, JETP Lett. 107, 151 (2018).

    Article  ADS  Google Scholar 

  18. V. A. Kostin and N. V. Vvedenskii, Phys. Rev. Lett. 120, 065002 (2018).

    Article  ADS  Google Scholar 

  19. D. Rompotis, T. Gebert, M. Wieland, F. Karimi, and M. Drescher, Opt. Lett. 40, 1675 (2015).

    Article  ADS  Google Scholar 

  20. X. M. Tong and C. D. Lin, J. Phys. B: At. Mol. Opt. Phys. 38, 2593 (2005).

    Article  ADS  Google Scholar 

  21. V. V. Strelkov, Phys. Rev. A 93, 053812 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The numerical calculations in this work were supported by the Russian Science Foundation (project no. 18–72–00103) and the analytical studies were supported by the Russian Foundation for Basic Research (project nos. 18–02–01150 and 19–52–12053) and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 19–1–2–52–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vvedenskii.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 7, pp. 449-455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostin, V.A., Vvedenskii, N.V. Mutual Enhancement of Brunel Harmonics. Jetp Lett. 110, 457–463 (2019). https://doi.org/10.1134/S0021364019190081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019190081

Navigation