Possibility of Direct Observation of the Bloch-Siegert Shift in Coherent Dynamics of Multiphoton Raman Transitions

  • A. P. SaikoEmail author
  • S. A. Markevich
  • R. Fedaruk


We study Rabi oscillations of the second-order Raman transition realized on dressed states of a qubit excited by an amplitude-modulated microwave field. The co-rotating component of the ultrastrong low-frequency modulation field excites virtual multiple photon processes between the dressed states and forms the Rabi frequency in the so-called rotating wave approximation. The counter-rotating modulation component also gives a significant contribution to the Rabi frequency owing to the Bloch-Siegert effect. It is shown that for properly chosen parameters of the modulation field and qubit, the Rabi oscillations in the rotating wave approximation vanish due to destructive interference of multiple photon processes. In this case the Rabi oscillation results exclusively from the Bloch-Siegert effect and is directly observed in the time-resolved coherent dynamics as the Bloch-Siegert oscillation. Correspondingly, in Fourier spectra of the coherent response, triplets are transformed into doublets with the splitting between the lines equal to twice the Bloch-Siegert shift. We demonstrate these features by calculations of the qubit’s evolution in the conditions of experiments with a NV center in diamond, where Raman transitions were observed. The direct observation of the Bloch-Siegert oscillation offers new possibilities for studying driven quantum systems in the ultastrong regime.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yan, Z. Lii, and H. Zheng, Phys. Rev. A 91, 053834 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    X. Cao, J. Q. You, H. Zheng, A. G. Kofman, and F. Nori, Phys. Rev. A 82, 022119 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    I. D. Feranchuk and A.V. Leonov, Phys. Lett. A 375, 385 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    F. Angaroni, G. Benenti, and G. Strini, Eur. Phys. J. D 72, 32109 (2018).CrossRefGoogle Scholar
  5. 5.
    F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).ADSCrossRefGoogle Scholar
  6. 6.
    T. Takui, L. Berliner, and G. Hanson, Electron Spin Resonance (ES’R) Based Quantum Computing, Springer, N.Y. (2016).CrossRefGoogle Scholar
  7. 7.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Gryn-berg, Atom - Photon Interactions: Basic Processes and Applications, Wiley, N.Y. (1992).Google Scholar
  8. 8.
    J.R. Schaibley, A. P. Burgers, G. A. McCracken, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Phys. Rev. B 87, 115311 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Nature (London) 431, 159 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    S. Saito, T. Meno, M. Ueda, H. Tanaka, K. Semba, and H. Takayanagi, Phys. Rev. Lett. 96, 107001 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A. Lu-pascu, Phys. Rev. Lett. 115, 133601 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Phys. Rev. Lett. 87, 246601 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    G.D. Fuchs, V.V. Dobrovitski, D.M. Toyli, F.J. Here-mans, and D.D. Awschalom, Science 326, 1520 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    P. London, P. Balasubramanian, B. Naydenov, L. P. McGuinness, and F. Jelezko, Phys. Rev. A 90, 012302 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    C. Avinadav, R. Fischer, P. London, and D. Gershoni, Phys. Rev. B 89, 245311 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Shim, S.-J. Lee, K.-K. Yu, S.-M. Hwang, and K. Kim, J. Magn. Reson. 239, 87 (2014).Google Scholar
  18. 18.
    F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nature Phys. 13, 44 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    P. Forn-Diaz, J. J. Garcia-Ripoll, B. Peropadre, M. A. Yurtalan, J.-L. Orgiazzi, R. Belyansky, C. M. Wilson, and A. Lupascu, Nature Phys. 13, 39 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    A. F. Kockum, A. Miranowicz, S.D. Liberato, S. Savasta, and F. Nori, Nature Rev. Phys. 1, 19 (2019).ADSCrossRefGoogle Scholar
  21. 21.
    J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and E. Solano, Phys. Rev. Lett. 105, 263603 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. P. Saiko, S. A. Markevich, and R. Fedaruk, Phys. Rev. A 93, 063834 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    G. Jeschke, Chem. Phys. Lett. 301, 524 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    A. P. Saiko and G. G. Fedoruk, JETP Lett. 87, 128 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    S. Rohr, E. Dupont-Ferrier, B. Pigeau, P. Verlot, V. Jacques, and O. Arcizet, Phys. Rev. Lett. 112, 010502 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. Redfield, Phys. Rev. 98, 1787 (1955).ADSCrossRefGoogle Scholar
  27. 27.
    R. Glenn, M. E. Limes, B. Pankovich, B. Saam, and M. E. Raikh, Phys. Rev. B 87, 155128 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    S. Papademetriou, S. Chakmakjian, and J. C.R. Stroud, J. Opt. Soc. Am. B 9, 1182 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 50, 1474 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. P. Saiko, R. Fedaruk, and S.A. Markevich, J. Phys. B 47, 155502 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    J.-M. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness, K. D. Jahnke, F. Jelezko, M. B. Plenio, and A. Retzker, New J. Phys. 14, 113023 (2012).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. P. Saiko, R. Fedaruk, and S.A. Markevich, J. Magn. Reson. 290, 60 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    A. Stark, N. Aharon, T. Unden, D. Louzon, A. Huck, A. Retzker, U. L. Andersen, and F. Jelezko, Nat. Com-mun. 8, 1105 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    A. P. Saiko, R. Fedaruk, and S.A. Markevich, J. Magn. Reson. 259, 47 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    Z. Shu, Y. Liu, Q. Cao, P. Yang, S. Zhang, M. B. Plenio, F. Jelezko, and J. Cai, Phys. Rev. Lett. 121, 210501 (2018).ADSCrossRefGoogle Scholar
  36. 36.
    A. P. Saiko, S. A. Markevich, and R. Fedaruk, Phys. Rev. A 98, 043814 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, N.Y. (1961).Google Scholar
  38. 38.
    E. Shahmoon and G. Kurizki, Phys. Rev. A 87, 013841 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A. I. Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki, PNAS 115, 9941 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Scientific-Practical Material Research CentreBelarus National Academy of SciencesMinskBelarus
  2. 2.Institute of PhysicsUniversity of SzczecinSzczecinPoland

Personalised recommendations