Advertisement

Flat Band and Planckian Metal

  • G. E. VolovikEmail author
Article
  • 26 Downloads

Abstract

We discuss the recent extension of the Sachdev-Ye-Kitaev microscopic model [1], which demonstrates the characteristic features of the Khodel-Shaginyan fermion condensate [2] — the existence of the finite region of momenta, where the energy of electrons is exactly zero (the flat band). The microscopic derivation of the flat band in this interacting model supports the original idea of Khodel and Shaginyan based on the phenomenological approach. It also suggests that it is the flat band, which is responsible for the linear dependence of resistivity on temperature in “strange metals”.

References

  1. 1.
    A. A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019).CrossRefGoogle Scholar
  2. 2.
    V. A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  3. 3.
    G. E. Volovik, Pis’ma ZhETF 107, 537 (2018) [JETP Lett. 107, 516 (2018)].Google Scholar
  4. 4.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  5. 5.
    P. Nozieres, J. Phys. (Fr.) 2, 443 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  7. 7.
    T. T. Heikkilä and G. E. Volovik, in Basic Physics of Functionalized Graphite, Springer (2016), p. 123.Google Scholar
  8. 8.
    S. T. Belyaev, JETP 12, 968 (1961).Google Scholar
  9. 9.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    S.-S. Lee Phys. Rev. D 79, 086006 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Sci. Rep. 7, 14539 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    D. Marchenko, D. V. Evtushinsky, E. Golias, A. Varykhalov, Th. Seyller, and O. Rader, Sci. Adv. 4, 0059 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    S. Carr, Sh. Fang, P. Jarillo-Herrero, and E. Kaxiras, Phys. Rev. B 98, 085144 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Cao, V. Fatemi, Sh. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Cao, V. Fatemi, A. Demir, Sh. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    A. Legros, S. Benhabib, W. Tabis et al. (Collaboration), Nat. Phys. 15, 142 (2018).CrossRefGoogle Scholar
  18. 18.
    Y. Nakajima, T. Metz, C. Eckberg et al. (Collaboration), arXiv:1902.01034.Google Scholar
  19. 19.
    Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies- Bigorda, K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero, arXiv:1901.03710.Google Scholar
  20. 20.
    P. T. Brown, D. Mitra, E. Guardado-Sanchez, R. Nourafkan, A. Reymbaut, C.-D. Hebert, S. Bergeron, A. M. S. Tremblay, J. Kokalj, D. A. Huse, P. Schau, and W. S. Bakr, Science 363, 379 (2019).ADSCrossRefGoogle Scholar
  21. 21.
    V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Phys. Rev. B 88, 115103 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Lett. A 382, 3281 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, V. A. Stephanovich, G. S. Japaridze, and S. A. Artamonov, Pis’ma v ZhETF 109, 266 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations