Advertisement

Hard-sphere Fluid: Structure and Viscosities

  • A. R. MuratovEmail author
Article
  • 14 Downloads

Abstract

As it was demonstrated earlier the mode-coupling approach taking into account the interaction between shear dynamic modes and soft density fluctuations gives the expression for shear viscosity which is in a good agreement with the viscosity of various liquids at low temperatures. The aim of this paper is the more careful study of corresponding relations for shear and bulk viscosities of hard-sphere fluid. The hard-sphere fluid is the simplest non-trivial example of the system having liquid-solid transition. It can be studied by molecular dynamics which allows to calculate accurately all the necessary parameters. It is demonstrated that the modecoupling expressions for viscosities agree well with the simulation results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, A.B. Schofield, M. E. Cates, M. Fuchs, and W. C. K. Poon, Science 296, 785 (2002).CrossRefGoogle Scholar
  2. 2.
    S. P. Das, Rev. Mod. Phys. 76, 785 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    P. N. Segre, S. P. Meeker, P. N. Pusey, and W. C. K. Poon, Phys. Rev. Lett. 75, 958 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Cheng, J. Zhu, P. M. Chaikin, S.-E. Phan, and W. B. Russel, Phys. Rev. E 65, 041405 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    H. Sigurgeirrson and D. M. Heyes, Mol. Phys. 101, 469 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    W. Krekelberg, J. Mittal, V. Ganesan, and Th. M. Trusket, J. Chem. Phys. 127, 044502 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1, (1993).ADSCrossRefGoogle Scholar
  8. 8.
    A. R. Muratov, JETP Lett. 86, 737 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. D. Rarity, and S. M. Underwood, Phys. Rev. Lett. 63, 2753 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge (1952).zbMATHGoogle Scholar
  11. 11.
    S. P. Das, Phys. Rev. A 36, 211 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals, Springer-Verlag, N.Y. (1993).Google Scholar
  13. 13.
    J. P. Hansen and I. R. McDonald, Theory of Simple Fluids, Academic Press, N.Y. (1986).Google Scholar
  14. 14.
    M. C. Wertheim, Phys. Rev. Lett. 10, 321 (1963).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley-Interscience Publication, N.Y. (1992).Google Scholar
  16. 16.
    M. L. de Haro and M. Robles, J. Phys. 16, S2089 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Oil and Gas Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations