Skip to main content
Log in

Diffraction of Light on a Regular Domain Structure with Inclined Walls in MgO:LiNbO3

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Features of the Bragg diffraction of a Gaussian light beam on a regular domain structure with inclined 180° domain walls in a 5% MgO:LiNbO3 crystal have been studied experimentally and theoretically. The regular domain structure with a period of 8.79 μm along the X axis has been prepared by the polarization switching method under the action of an external electric field in a 1-mm Z-cut plate. It has been shown that the inclination of walls of the regular domain structure by the angle α to the polar Z axis results in the mth order Bragg diffraction characterized by the intensity distribution Im(z) with two maxima the spacing between which at m = 1, 3, 4, ... increases as mα. The application of an external static electric field to the regular domain structure has allowed using the dynamics of the efficiency of the Bragg diffraction with m = 1 to detect the screening of this field associated with the conductivity of inclined domain walls. The effective value of this conductivity over the period Λ for the studied regular domain structure with α = 0.31° has been estimated as σeff = 5.96 × 10–11 Ω–1 m–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferroelectric Crystals for Photonic Applications, Ed. by P. Ferrari, S. Grilli, and P. de Natale (Springer, Berlin, Heidelberg, 2014).

    Book  Google Scholar 

  2. A. V. Nikandrov and A. S. Chirkin, JETP Lett. 76, 275 (2002).

    Article  ADS  Google Scholar 

  3. G. D. Laptev, A. A. Novikov, and A. S. Chirkin, JETP Lett. 78, 38 (2003).

    Article  ADS  Google Scholar 

  4. A. N. Tuchak, G. N. Gol’tsman, G. Kh. Kitaeva, A. N. Penin, S. V. Seliverstov, M. I. Finkel’, A. V. Shepelev, and P. V. Yakunin, JETP Lett. 96, 94 (2012).

    Article  ADS  Google Scholar 

  5. O. Alibart, V. D’Auria, M. DeMicheli, F. Doutre, F. Kaiser, L. Labonte, T. Lunghi, E. Picholle, and S. J. Tanzilli, J. Opt. 18, 104001 (2016).

    Article  ADS  Google Scholar 

  6. T. Ding, Y. Zheng, and X. Chen, Opt. Lett. 44, 1524 (2019).

    Article  ADS  Google Scholar 

  7. M. Yamada, Rev. Sci. Instrum. 71, 4010 (2000).

    Article  ADS  Google Scholar 

  8. I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, Opt. Lett. 41, 4174 (2016).

    Article  ADS  Google Scholar 

  9. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, and Y. C. Huang, Opt. Lett. 32, 545 (2007).

    Article  ADS  Google Scholar 

  10. T. Ding, Y. Zheng, and X. Chen, Opt. Express 26, 12016 (2018).

    Article  ADS  Google Scholar 

  11. H. Jiang, Y. Chen, G. Li, C. Zhu, and X. Chen, Opt. Express 23, 9784 (2015).

    Article  ADS  Google Scholar 

  12. V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Appl. Phys. Rev. 2, 040604 (2015).

    Article  ADS  Google Scholar 

  13. M. Schroder, A. Hausmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22, 3936 (2012).

    Article  Google Scholar 

  14. T. Kampfe, P. Reichenbach, M. Schroder, A. Hausmann, and L. M. Eng, Phys. Rev. B 89, 035314 (2014).

    Article  ADS  Google Scholar 

  15. C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soegel, C. Razzaghi, and I. Breunig, Sci. Rep. 7, 9862 (2017).

    Article  ADS  Google Scholar 

  16. A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, Appl. Phys. Lett. 114, 092901 (2019).

    Article  ADS  Google Scholar 

  17. A. L. Aleksandrovskii, O. A. Gliko, I. I. Naumova, and V. I. Pryalkin, Quantum Electron. 26, 641 (1996).

    Article  ADS  Google Scholar 

  18. M. Muller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).

    Article  ADS  Google Scholar 

  19. S. M. Shandarov, A. E. Mandel, S. V. Smirnov, T. M. Akylbaev, M. V. Borodin, A. R. Akhmatkhanov, and V. Ya. Shur, Ferroelectrics 496, 134 (2016).

    Article  Google Scholar 

  20. S. M. Shandarov, A. E. Mandel, A. V. Andrianova, G. I. Bolshanin, M. V. Borodin, A. Yu. Kim, S. V. Smirnov, A. R. Akhmatkhanov, and V. Ya. Shur, Ferroelectrics 508, 49 (2017).

    Article  Google Scholar 

  21. V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, and A. A. Esin, Appl. Phys. Lett. 103, 102905 (2013).

    Article  ADS  Google Scholar 

  22. T. Sluka, A. K. Tagantsev, P. S. Bednyakov, and N. Setter, Nat. Commun. 4, 1808 (2013).

    Article  ADS  Google Scholar 

  23. P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, and P. V. Yudin, Comput. Mater. 4, 65 (2018).

    Article  Google Scholar 

  24. T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, Appl. Phys. Lett. 110, 132905 (2017).

    Article  ADS  Google Scholar 

  25. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 110 (2012).

    Article  ADS  Google Scholar 

  26. R. K. Vasudevan, A. N. Morozovska, E. A. Eliseev, J. Britson, J.-C. Yang, Y.-H. Chu, P. Maksymovych, L. Q. Chen, V. Nagarajan, and S. V. Kalinin, Adv. Funct. Mater. 23, 2592 (2013).

    Article  Google Scholar 

  27. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  28. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Foundations of Acoustooptics (Radio Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  29. S. M. Shandarov, E. N. Savchenkov, M. V. Borodin, A. E. Mandel’, A. R. Akhmatkhanov, and V. Ya. Shur, in HOLOEXPO 2018, Proceedings of the 15th International Conference on Holography and Applied Optical Technologies, 2018, p. 66.

    Google Scholar 

  30. M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, J. Appl. Phys. 98, 064104 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project nos. 3.1110.2017/4.6 and 3.8898.2017/8.9, state assignment for 2017–2019) and by the Russian Foundation for Basic Research (project nos. 16-29-14046-ofi_m and 18-32-00641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Savchenkov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 3, pp. 165–169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenkov, E.N., Shandarov, S.M., Smirnov, S.V. et al. Diffraction of Light on a Regular Domain Structure with Inclined Walls in MgO:LiNbO3. Jetp Lett. 110, 178–182 (2019). https://doi.org/10.1134/S0021364019150128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019150128

Navigation