Skip to main content
Log in

Metastable Conducting Crystalline Hydrogen at High Pressure

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The quantum molecular dynamics method within the density functional theory has been used to calculate the equation of state, pair correlation function, and static electrical conductivity of solid hydrogen in the region of formation of a conducting phase. Hysteresis has been revealed on the density dependence of the pressure at a temperature of 100 K under compression and subsequent tension. The overlapping of branches of the isotherms of the molecular and nonmolecular phases of solid hydrogen corresponds to the region of existence of metastable states. The width of this region is 275 GPa. It has been shown that conducting crystalline nonmolecular hydrogen with P21/c symmetry can exist at extension to a pressure of 350 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. Yu. Kagan and E. G. Brovman, Sov. Phys. Usp. 14, 809 (1971).

    Article  ADS  Google Scholar 

  3. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 34, 1300 (1971).

    ADS  Google Scholar 

  4. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).

    ADS  Google Scholar 

  5. Yu. Kagan, E. G. Brovman, and A. Kholas, Sov. Phys. JETP 46, 507 (1977).

    ADS  Google Scholar 

  6. R. Dias and I. F. Silvera, Science (Washington, DC, U. S.) 355, 715 (2017).

    Article  ADS  Google Scholar 

  7. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).

    Article  ADS  Google Scholar 

  8. S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, Phys. Rev. Lett. 112, 165501 (2014).

    Article  ADS  Google Scholar 

  9. N. N. Degtyarenko and E. A. Mazur, JETP Lett. 104, 319 (2016).

    Article  ADS  Google Scholar 

  10. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104, 460 (2016).

    Article  ADS  Google Scholar 

  11. N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105, 664 (2017).

    Article  ADS  Google Scholar 

  12. G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, J. Chem. Phys. 148, 102314 (2018).

    Article  ADS  Google Scholar 

  13. C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).

    Article  Google Scholar 

  14. G. E. Norman and I. M. Saitov, Dokl. Phys. 63, 272 (2018).

    Article  ADS  Google Scholar 

  15. G. E. Norman and I. M. Saitov, Dokl. Phys. 64, 145 (2019).

    Article  ADS  Google Scholar 

  16. A. F. Goncharov, J. S. Tse, H. Wang, J. Yang, V.V. Struzhkin, R. T. Howie, and E. Gregoryanz, Phys. Rev. B 87, 024101 (2013).

    Article  ADS  Google Scholar 

  17. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  18. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  19. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  20. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  21. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  22. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  23. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  Google Scholar 

  24. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  25. H. T. Stokes and D. M. Hatch, J. Appl. Cryst. 38, 237 (2005).

    Article  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  27. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  28. G. E. Norman, I. M. Saitov, and R. A. Sartan, Contrib. Plasma Phys. 59, e201800173 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The calculations were performed at the clusters of the Interdisciplinary Supercomputer Center, Russian Academy of Sciences, and at the K-100 cluster, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-08-01135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Saitov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 3, pp. 184–189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitov, I.M. Metastable Conducting Crystalline Hydrogen at High Pressure. Jetp Lett. 110, 206–210 (2019). https://doi.org/10.1134/S0021364019150116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019150116

Navigation