Advertisement

Soliton Photoconduction in the Charge-density-wave Conductor Orthorhombic TaS3

  • V. E. Minakova
  • A. N. Taldenkov
  • S. V. Zaitsev-ZotovEmail author
Article
  • 9 Downloads

Abstract

The effect of uniaxial strain on low-temperature conduction and photoconduction of the Peierls conductor orthorhombic TaS3 is studied. A consistent increase in the conductance and photoconductance at T ≲ 60 K, was found, contradicting the collisional recombination model, which well describes photoconduction in unstrained samples. The increase in conductance is accompanied by an increase in the threshold field for onset of charge-density-wave sliding, ET, and the relationship between ET and the conductance is similar to that observed in the case of photoconduction. This relationship is caused by a change in the screening conditions of the charge density wave owing to a change in the current carrier concentration. A change in the character of the charge-density-wave pinning from three-dimensional at T ≳ 60 K to one-dimensional at T ≲ 45 K under ε ≈ 0.5 % elongation is observed. The effects are explained by the fact that under the strain, the contribution of solitons to both low-temperature conduction and photoconduction becomes dominant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Monceau, Adv. Phys. 61, 325 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Brasovskii, Pis’ma v ZhETF 28, 656 (1978) [JETP Lett. 28, 606 (1978)].ADSGoogle Scholar
  4. 4.
    S. A. Brasovskii, ZhETF 78, 677 (1980) [Sov. Phys. ZhETF 51 342 (1980)].Google Scholar
  5. 5.
    T. Takoshima, M. Ido, T. Tsutsumi, T. Sambongi, S. Honma, K. Yamaya, and Y. Abe, Sol. State Commun. 35, 911 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. I. Latyshev, P. Monceau, S. Brasovskii, A. P. Orlov, and T. Fournier, Phys. Rev. Lett. 95, 266402 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    S. Brasovskii, C. Brun, Z.-Z. Wang, and P. Monceau, Phys. Rev. Lett. 108, 096801 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. V. Zaitsev-Zotov, V. E. Minakova, V. F. Nasretdinova, and S. G. Zybtsev, Physica B 407, 1868 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Zaitsev-Zotov, Microelectr. Eng. 69, 549 (2003).CrossRefGoogle Scholar
  10. 10.
    S. K. Zhilinskii, M. E. Itkis, I. Yu. Kal’nova, F. Ya. Nad’, and V. B. Preobrazhensky, ZhETF 85, 362 (1983) [Sov. Phys. JETP 58, 211 (1983)].Google Scholar
  11. 11.
    Z. Z. Wang, H. Salva, P. Monceau, M. Renard, C. Roucau, R. Ayroles, F. Levy, L. Guemas, and A. Meerschaut, J. Physique-Letters 44, L–311 (1983).CrossRefGoogle Scholar
  12. 12.
    K. Inagaki, M. Tsubota, K. Higashiyama, K. Ichimua, S. Tanda, K. Yamamoto, N. Hanasaki, N. Ikeda, Y. Nogami, T. Ito, and H. Toyokawa, J. Phys. Soc. Jpn. 77, 093708 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    V. B. Preobrazhensky, A. N. Taldenkov, and I. Yu. Kal’nova, Pis’ma v ZhETF 40, 183 (1984) [JETP Lett. 40, 944 (1984)].ADSGoogle Scholar
  14. 14.
    R. S. Lear, M. J. Skove, E. P. Stillwell, and J. W. Brill, Phys. Rev. B 29, 5656 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    S. G. Zybtsev and V. Ya. Pokrovskii, Physica B 460, 34 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    N. Ogawa, A. Shiraga, R. Kondo, S. Kagoshima, and K. Miyano, Phys. Rev. Lett. 87, 256401 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Zaitsev-Zotov and V. E. Minakova, Pis’ma v ZhETF 79, 680 (2004) [JETP Lett. 79, 550 (2004)].Google Scholar
  18. 18.
    S. V. Zaitsev-Zotov and V. E. Minakova, Phys. Rev. Lett. 97, 266404 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    M. E. Itkis and F. Ya. Nad, Pis’ma v ZhETF 39, 373 (1984) [JETP Lett. 39, 448 (1984)].ADSGoogle Scholar
  20. 20.
    V. F. Nasretdinova and S. V. Zaitsev-Zotov, Pis’ma v ZhETF 89, 607 (2009) [JETP Lett. 89, 514 (2009)].Google Scholar
  21. 21.
    V. E. Minakova, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, Physica B: Condens. Matter 460, 185 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    M. E. Itkis, F. Ya. Nad’, and P. Monceau, J. Phys.: Condens. Matter 2, 8327 (1990).ADSGoogle Scholar
  23. 23.
    S. G. Zybtsev, V. Ya. Pokrovskii, O. M. Zhigalina, D. N. Khmelenin, D. Starešinić, S. Šturm, and E. Tchernychova, ZhETP 151, 776 (2017) [JETP 124 665 (2017)].Google Scholar
  24. 24.
    S. V. Zaitsev-Zotov, Physics — Uspekhi 47, 533 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    S. V. Zaitsev-Zotov and V. E. Minakova, J. Phys. IV France 131, 95 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Matsuura, J. Hara, K. Inagaki, M. Tsubota, T. Hosokawa, and S. Tanda, EPL 109 27005 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Nauka/Interperiodica 2019

Authors and Affiliations

  • V. E. Minakova
    • 1
  • A. N. Taldenkov
    • 2
  • S. V. Zaitsev-Zotov
    • 1
    Email author
  1. 1.Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations