Skip to main content
Log in

Screening of an Electric Field in Water

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The screening of an electric field in water has been studied taking into account correlations between protons, which are described by the ice rules. It is shown that the problem has two characteristic screening lengths l1l2, which are determined by majority and minority charge carriers in water. The commonly accepted static dielectric constant of water about 83 at room temperature is applicable only in the distance range l1xl2. At smaller distances, the dielectric constant is determined by the high-frequency dielectric constant and is ϵ ≈ 3.2, whereas the dielectric constant at large distances tends to infinity, which corresponds to the complete screening of the electric field. The screening lengths have been numerically determined, their temperature dependences have been described, and an experiment has been proposed to test the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Aragones, L. G. MacDowell, and C. Vega, J. Phys. Chem. A 115, 5745 (2011).

    Article  Google Scholar 

  2. P. Debye and E. Huckel, Phys. Z. 24, 185 (1923).

    Google Scholar 

  3. A. Yu. Grosberg, T. T. Nguen, and B. I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).

    Article  ADS  Google Scholar 

  4. M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 2978 (2014).

    Article  Google Scholar 

  5. G. Malenkov, J. Phys.: Condens. Matter 21, 283101 (2009).

    Google Scholar 

  6. S. Meng, L. F. Greenlee, Y. R. Shen, and E. Wang, Nano Res. 8, 3085 (2015).

    Article  Google Scholar 

  7. C. J. T. Grotthuss, Ann. Chim. 58, 54 (1806).

    Google Scholar 

  8. V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford Univ. Press, New York, USA, 1999).

    Google Scholar 

  9. S. Cukierman, Biochim. Biophys. Acta 1757, 876 (2006).

    Article  Google Scholar 

  10. D. Marx, Chem. Phys. Chem. 7, 1848 (2006).

    Article  Google Scholar 

  11. C. Jaccard, Phys. Kondens. Materie 3, 99 (1964).

    ADS  Google Scholar 

  12. M. Hubmann, Z. Phys. B 32, 127 (1979).

    Article  ADS  Google Scholar 

  13. J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  ADS  Google Scholar 

  14. H. Granicher, Z. Kristallogr. 110, 432 (1958).

    Article  Google Scholar 

  15. Ya. I. Frenkel’, Kinetic Theory of Liquids (Oxford Univ., London, 1946; Nauka, Leningrad, 1975).

    MATH  Google Scholar 

  16. F. Sedlmeier, J. Janecek, C. Sendner, and L. Bocquet, Biointerphases 3, 23 (2008).

    Article  Google Scholar 

  17. J. Kofinger, G. Hummer, and C. Dellago, Proc. Natl. Acad. Sci. 105, 13218 (2008).

    Article  ADS  Google Scholar 

  18. S. Strazdaite, J. Versluis, E. H. G. Backus, and H. J. Bakker, J. Chem. Phys. 140, 054701 (2014).

    Article  ADS  Google Scholar 

  19. G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, I. V. Grigorieva, and A. K. Geim, Nature (London, U.K.) 519, 443 (2015).

    Article  ADS  Google Scholar 

  20. M. I. Ryzhkin, A. V. Klyuev, V. V. Sinitsyn, and I. A. Ryzhkin, JETP Lett. 104, 248 (2016).

    Article  ADS  Google Scholar 

  21. C. Haas, Phys. Lett. 3, 126 (1962).

    Article  ADS  Google Scholar 

  22. L. Onsager and L. K. Runnels, J. Chem. Phys. 50, 1089 (1969).

    Article  ADS  Google Scholar 

  23. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultant Bureau, New York, 1965).

    Google Scholar 

  24. A. V. Klyuev, I. A. Ryzhkin, and M. I. Ryzhkin, JETP Lett. 100, 604 (2014).

    Article  ADS  Google Scholar 

  25. V. G. Artemov and A. A. Volkov, Ferroelectrics 466, 158 (2014).

    Article  Google Scholar 

  26. V. G. Artemov, I. A. Ryzhkin, and V. V. Sinitsyn, JETP Lett. 102, 41 (2015).

    Article  ADS  Google Scholar 

  27. I. A. Ryzhkin and R. W. Whitworth, J. Phys. C 9, 395 (1997).

    Google Scholar 

  28. L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, R. Radha, T. Taniguchi, W. Watanabe, G. Gomila, K. S. Novoselov, and A. K. Geim, Science (Washington, DC, U. S.) 360, 139 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-02-00512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klyuev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 2, pp. 112–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkin, M.I., Ryzhkin, I.A. & Klyuev, A.V. Screening of an Electric Field in Water. Jetp Lett. 110, 127–132 (2019). https://doi.org/10.1134/S0021364019140108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019140108

Navigation