Skip to main content
Log in

AC and DC Conductivities in an n-GaAs/AlAs Heterostructure with a Wide Quantum Well in the Integer Quantum Hall Effect Regime

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The direct-current (dc) \(\sigma_{xx}^{\rm{dc}}\) and alternating-current (ac) \(\sigma_{xx}^{\rm{ac}}=\sigma_1-i\sigma_2\) conductivities of a wide (46 nm) GaAs quantum well with the bilayer electron density distribution are measured. It is found that the magnetic field dependence of σxx exhibits three sets of oscillations related to the transitions between Landau levels in symmetric and antisymmetric subbands and with the transitions occurring owing to the Zeeman splitting of these subbands. The analysis of the frequency dependence of the ac conductivity and the σ12 ratio demonstrates that the conductivity at the minima of oscillations is determined by the hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Boebinger, H. W. Jiang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 64, 1793 (1990).

    Article  ADS  Google Scholar 

  2. Y. W. Suen, J. Jo, M. B. Santos, L. W. Engel, S. W. Hwang, and M. Shayegan, Phys. Rev. B 44, 5947(R) (1991).

    Article  ADS  Google Scholar 

  3. Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).

    Article  ADS  Google Scholar 

  4. J. Shabani, Y. Liu, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. B 88, 245413 (2013).

    Article  ADS  Google Scholar 

  5. V. M. Polyanovskii, Sov. Phys. Semicond. 22, 1408 (1988).

    Google Scholar 

  6. P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).

    Article  ADS  Google Scholar 

  7. D. R. Leadley, R. Fletcher, R. J. Nicholas, F. Tao, C. T. Foxon, and J. J. Harris, Phys. Rev. B 46, 12439 (1992).

    Article  ADS  Google Scholar 

  8. A. A. Bykov, A. V. Goran, and S. A. Vitkalov, Phys. Rev. B 81, 155322 (2010).

    Article  ADS  Google Scholar 

  9. A. A. Bykov, I. S. Strygin, A. V. Goran, I. V. Marchishin, D. V. Nomokonov, A. K. Bakarov, S. Abedi, and S. A. Vitkalov, JETP Lett. 109, 400 (2019).

    Article  ADS  Google Scholar 

  10. I. L. Drichko, I. Yu. Smirnov, M. O. Nestoklon, A. V. Suslov, D. Kamburov, K. W. Baldwin, L. N. Pfeiffer, K. W. West, and L. E. Golub, Phys. Rev. B 97, 075427 (2018).

    Article  ADS  Google Scholar 

  11. G. S. Boebinger, Phys. Scr. T 39, 230 (1991).

    Article  ADS  Google Scholar 

  12. V. D. Kagan, Semiconductors 31, 401 (1997).

    Article  ADS  Google Scholar 

  13. I. L. Drichko, A. M. Diakonov, I. Yu. Smirnov, Y. M. Galperin, and A. I. Toropov, Phys. Rev. B 62, 7470 (2000).

    Article  ADS  Google Scholar 

  14. L. W. Engel, D. Shahar, Ç. Kurdak, and D. C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).

    Article  ADS  Google Scholar 

  15. I. L. Drichko, A. V. Diakonov, V. A. Malysh, I. Yu. Smirnov, Y. M. Galperin, N. D. Ilyinskaya, A. A. Usikova, M. Kummer, and H. von Känel, J. Appl. Phys. 116, 154309 (2014).

    Article  ADS  Google Scholar 

  16. A. L. Efros, Sov. Phys. JETP 35, 556 (1985).

    Google Scholar 

  17. Y. M. Galperin, V. L. Gurevich, and D. A. Parshin, in Hopping Transport in Solids, Ed. by B. Shklovskii and M. Pollak (Elsevier, New York, 1991), p. 81.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Drichko.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 1, pp. 62–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.A., Drichko, I.L., Smirnov, I.Y. et al. AC and DC Conductivities in an n-GaAs/AlAs Heterostructure with a Wide Quantum Well in the Integer Quantum Hall Effect Regime. Jetp Lett. 110, 68–73 (2019). https://doi.org/10.1134/S0021364019130095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019130095

Navigation