Skip to main content
Log in

A New Type of Charge-Density-Wave Pinning in Orthorhombic TaS3 Crystals with Quenching Defects

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Diminishing in the concentration of quenching defects during thermocycling of orthorhombic TaS3 samples in the temperature range below the Peierls transition temperature T < TP is observed. It makes it possible to study the character of pinning of the charge density wave by these defects. A number of fundamental differences from pinning by ordinary local pinning centers—impurities and point defects—have been found. We conclude that quenching defects are extended (non-local) objects (presumably, dislocations) that can diffuse from the crystal during low-temperature thermocycling due to their strong interaction with the charge density wave, which is intrinsic for Peierls conductors. The presence of these defects leads to a previously unknown non-local type of the charge-density-wave pinning that acts on TP and the threshold field for the onset of charge-density-wave sliding, ET, differently in comparison with the local pinning centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Monceau, Adv. Phys. 61, 325 (2012).

    Article  ADS  Google Scholar 

  2. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

    Article  ADS  Google Scholar 

  3. A. I. Larkin, Sov. Phys. JETP 31, 784 (1970).

    ADS  Google Scholar 

  4. K. B. Efetov and A. I. Larkin, Sov. Phys. JETP 45, 1236 (1977).

    ADS  Google Scholar 

  5. H. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun. 14, 703 (1974).

    Article  ADS  Google Scholar 

  6. H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 476 (1978).

    Article  Google Scholar 

  7. H. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).

    Article  ADS  Google Scholar 

  8. S. Abe, J. Phys. Soc. Jpn. 54, 3494 (1985).

    Article  ADS  Google Scholar 

  9. S. Abe, J. Phys. Soc. Jpn. 55, 1987 (1986).

    Article  ADS  Google Scholar 

  10. G. Mihály, L. Mihály, and H. Mutka, Solid State Commun. 49, 1009 (1984).

    Article  ADS  Google Scholar 

  11. G. Mihály, N. Housseau, H. Mutka, L. Zuppiroli, J. Pelissier, P. Gressier, A. Meerschaut, and J. Rouxel, J. Phys. Lett. 42, L–263 (1981).

    Article  Google Scholar 

  12. H. Mutka, S. Bouffard, G. Mihály, and L. Mihály, J. Phys. Lett. 45, L1–13 (1984).

    Article  Google Scholar 

  13. Yu. I. Latyshev, V. V. Petristchev, Ya. S. Savitskaya, and V. V. Frolov, Synth. Met. 19, 849 (1997).

    Article  Google Scholar 

  14. P.-L. Hsieh, F. de Czitto, A. Janossy, and J. W. Savage, J. Phys. 44, C3–1753 (1983).

    Google Scholar 

  15. K.-Th. von Wilke, Kristallzüchtung (VEB Deutscher Verlag. Wissensch., Berlin, 1973).

    Google Scholar 

  16. Ch. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971).

    MATH  Google Scholar 

  17. S. V. Zaitsev-Zotov, Phys. Usp. 47, 533 (2004).

    Article  ADS  Google Scholar 

  18. J. C. Gill, Phys. Rev. B 53, 15586 (1996).

    Article  ADS  Google Scholar 

  19. V. F. Nasretdinova, E. B. Yakimov, and S. V. Zaitsev-Zotov, Phys. B (Amsterdam, Neth.) 460, 180 (2015).

    Article  ADS  Google Scholar 

  20. F. Ya. Nad’ and M. E. Itkis, JETP Lett. 63, 262 (1996).

    Article  ADS  Google Scholar 

  21. Z. Z. Wang, H. Salva, P. Monceau, and M. Renard, J. Phys. Lett. 44, L–311 (1983).

    Article  Google Scholar 

  22. K. Inagaki, M. Tsubota, K. Higashiyama, K. Ichimua, S. Tanda, K. Yamamoto, N. Hanasaki, N. Ikeda, Y. Nogami, T. Ito, and H. Toyokawa, J. Phys. Soc. Jpn. 77, 093708 (2008).

    Article  ADS  Google Scholar 

  23. S. G. Zybtsev, V. Ya. Pokrovskii, O. M. Zhigalina, D. N. Khmelenin, D. Starešinić, S. Šturm, and E. Tchernychova, J. Exp. Theor. Phys. 124, 665 (2017).

    Article  ADS  Google Scholar 

  24. J. R. Tucker, W. G. Lyons, and G. Gammie, Phys. Rev. B 38, 1148 (1988).

    Article  ADS  Google Scholar 

  25. S. V. Zaitsev-Zotov, G. Remenyi, and P. Monceau, Phys. Rev. Lett. 78, 1098 (1997).

    Article  ADS  Google Scholar 

  26. D. V. Borodin, S. V. Zaitsev-Zotov, and F. Ya. Nad’, Sov. Phys. JETP 66, 793 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zaitsev-Zotov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 1, pp. 56–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minakova, V.E., Nikitina, A.M. & Zaitsev-Zotov, S.V. A New Type of Charge-Density-Wave Pinning in Orthorhombic TaS3 Crystals with Quenching Defects. Jetp Lett. 110, 62–67 (2019). https://doi.org/10.1134/S0021364019130034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019130034

Navigation