Skip to main content
Log in

Generation of a Polarization Sensitive Photocurrent in a CuSe/Se Nanocomposite Thin Film

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

CuSe-based structures are widely used in various fields of photonics and optoelectronics. It has been shown for the first time that a photocurrent depending on the direction of the wave vector and polarization of the incident radiation can be excited in thin films consisting of amorphous Se and CuSe nanocrystallites. Films on glass substrates have been obtained by the successive thermal deposition of selenium and copper in vacuum at room temperature. The photocurrent has been excited by radiation of a femtosecond laser at a wavelength of 795 nm at room temperature. It has been found that the longitudinal photocurrent measured in the direction of the plane of incidence is maximal at p-polarization and vanishes at s-polarization. The transverse pho-tocurrent perpendicular to the plane of incidence is an odd function of the polarization angle and is absent at p- and s-polarizations. In both cases, the photocurrent is an odd function of the angle of incidence of light on the film surface. The results obtained are in qualitative agreement with the theory of generation of the surface photogalvanic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Springer, New York, 2004).

    Google Scholar 

  2. V. L. Gurevich and R. Laiho, Phys. Solid State bd42, 1807 (2000).

    Article  ADS  Google Scholar 

  3. A. M. Danishevskii, A. A. Kastal’skii, S. M. Ryvkin, and I. D. Yaroshetskii, Sov. Phys. JETP bd31, 292 (1970).

    ADS  Google Scholar 

  4. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, Appl. Phys. Lett. bd17, 75 (1970).

    Article  ADS  Google Scholar 

  5. E. V. Beregulin, P. M. Valov, S. M. Ryvkin, I. D. Yaro-shetskii, I. S. Lisker, and A. L. Pukshanskii, JETP Lett. bd25, 101 (1977).

    ADS  Google Scholar 

  6. E. V. Beregulin, P. M. Voronov, S. V. Ivanov, P. S. Kop’ev, and I. D. Yaroshetskii, JETP Lett. bd59, 85 (1994).

    ADS  Google Scholar 

  7. V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, Sov. Phys. Solid State bd24, 488 (1982).

    Google Scholar 

  8. V. M. Kovalev, A. E. Miroshnichenko, and I. G. Savenko, Phys. Rev. B bd98, 165405 (2018).

    Article  ADS  Google Scholar 

  9. L. I. Magarill and M. V. Entin, Sov. Phys. Solid State bd21, 743 (1979).

    Google Scholar 

  10. V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, JETP Lett. bd31, 546 (1980).

    ADS  Google Scholar 

  11. L. I. Magarill and M. V. Entin, Sov. Phys. JETP bd54, 531 (1981).

    Google Scholar 

  12. V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, Sov. Phys. JETP bd53, 1201 (1981).

    Google Scholar 

  13. G. M. Mikheev, A. S. Saushin, V. M. Styapshin, and Y. P. Svirko, Sci. Rep. bd8, 8644 (2018).

    Article  ADS  Google Scholar 

  14. G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, Quantum Electron. bd40, 425 (2010).

    Article  ADS  Google Scholar 

  15. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. bd105, 227402 (2010).

    Article  ADS  Google Scholar 

  16. P. A. Obraztsov, G. M. Mikheev, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, Appl. Phys. Lett. 98, 091903 (2011).

    Article  ADS  Google Scholar 

  17. G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, Nano Lett. bd12, 77 (2012).

    Article  ADS  Google Scholar 

  18. M. M. Glazov and S. D. Ganichev, Phys. Rep. bd535, 101 (2014).

    Article  ADS  Google Scholar 

  19. A. S. Vengurlekar and T. Ishihara, Appl. Phys. Lett. bd87, 091118 (2005).

    Article  ADS  Google Scholar 

  20. N. Noginova, V. Rono, F. J. Bezares, and J. D. Cald-well, New J. Phys. bd15, 113061 (2013).

    Article  ADS  Google Scholar 

  21. M. Akbari, M. Onoda, and T. Ishihara, Opt. Express bd23, 823 (2015).

    Article  ADS  Google Scholar 

  22. G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, Tech. Phys. Lett. bd36, 675 (2010).

    Article  ADS  Google Scholar 

  23. G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, K. G. Mikheev, and Y. P. Svirko, Nanoscale Res. Lett. bd12, 39 (2017).

    Article  ADS  Google Scholar 

  24. S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, J. Appl. Phys. bd105, 013106 (2008).

    ADS  Google Scholar 

  25. G. M. Mikheev and V. M. Styapshin, Instrum. Exp. Tech. bd55, 85 (2012).

    Article  Google Scholar 

  26. M. Akbari and T. Ishihara, Opt. Express bd25, 2143 (2017).

    Article  ADS  Google Scholar 

  27. M. A. Malik, P. O’Brien, and N. Revaprasadu, Adv. Mater. bd11, 1441 (1999).

    Article  Google Scholar 

  28. A. Zhang, Q. Ma, Z. Wang, M. Lu, P. Yang, and G. Zhou, Mater. Chem. Phys. bd124, 916 (2010).

    Article  Google Scholar 

  29. T. P. Vinod, X. Jin, and J. Kim, Mater. Res. Bull. bd46, 340 (2011).

    Article  Google Scholar 

  30. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, Tech. Phys. bd51, 1190 (2006).

    Article  Google Scholar 

  31. V. Ya. Kogai, A. V. Vakhrushev, and A. Yu. Fedotov, JETP Lett. bd95, 454 (2012).

    Article  ADS  Google Scholar 

  32. E. V. Aleksandrovich, E. V. Stepanova, K. G. Mikheev, and G. M. Mikheev, Tech. Phys. Lett. bd44, 797 (2018).

    Article  ADS  Google Scholar 

  33. Y. Ma, H. Ji, Z. Jin, J. Wang, X. Zheng, R. Yuan, H. Li, and S. Zhao, Integr. Ferroelectr. bd181, 102 (2017).

    Article  Google Scholar 

  34. M. Ishii, K. Shibata, and H. Nozaki, J. Solid State Chem. bd105, 504 (1993).

    Article  ADS  Google Scholar 

  35. R. E. Tallman, B. A. Weinstein, A. Reznik, M. Kubota, K. Tanioka, and J. A. Rowlands, J. Non-Cryst. Solids bd354, 4577 (2008).

    Article  ADS  Google Scholar 

  36. K. Okano, I. Saito, T. Mine, Y. Suzuki, T. Yamada, N. Rupesinghe, G. A. J. Amaratunga, W. I. Milne, and D. R. T. Zahn, J. Non-Cryst. Solids bd353, 308 (2007).

    Article  ADS  Google Scholar 

  37. A. H. Goldan, C. Li, S. J. Pennycook, J. Schneider, A. Blom, and W. Zhao, J. Appl. Phys. bd120, 135101 (2016).

    Article  ADS  Google Scholar 

  38. V. M. Garcia, P. K. Nair, and M. T. S. Nair, J. Cryst. Growth bd203, 113 (1999).

    Article  ADS  Google Scholar 

  39. S. R. Gosavi, N. G. Deshpande, Y. G. Gudage, and R. Sharma, J. Alloys Compd. bd448, 344 (2008).

    Article  Google Scholar 

  40. P. P. Hankare, A. S. Khomane, P. A. Chate, K. C. Rathod, and K. M. Garadkar, J. Alloys Compd. bd469, 478 (2009).

    Article  Google Scholar 

  41. E. I. Adirovich, Usp. Fiz. Nauk bd105, 746 (1971).

    Article  Google Scholar 

  42. J. I. Pankove, Phys. Status Solidi A bd61, 127 (1980).

    Article  ADS  Google Scholar 

  43. Sh. B. Atakulov, S. M. Zainolobidinova, G. A. Nabiev, and O. A. Tukhtamatov, Semiconductors bd46, 708 (2012).

    Article  ADS  Google Scholar 

  44. L. Zhu, Y. Huang, Z. Yao, B. Quan, L. Zhang, J. Li, C. Gu, X. Hu, and R. Zen, Nanoscale bd9, 10301 (2017).

    Article  Google Scholar 

  45. Y.-Q. Liu, H.-D. Wu, Y. Zhao, and G.-B. Pan, Lang-muir bd31, 4958 (2015).

    Article  Google Scholar 

  46. B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, Sov. Phys. Usp. bd25, 143 (1982).

    Article  ADS  Google Scholar 

  47. V. L. Al’perovich, A. O. Minaev, and A. S. Terekhov, JETP Lett. bd49, 702 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Mikheev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 11, pp. 739–745.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, G.M., Kogai, V.Y., Zonov, R.G. et al. Generation of a Polarization Sensitive Photocurrent in a CuSe/Se Nanocomposite Thin Film. Jetp Lett. 109, 704–709 (2019). https://doi.org/10.1134/S0021364019110109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019110109

Navigation