Advertisement

Distributions of Charged Particles’ Transverse Momentum and Pseudorapidity in pp Collisions at 0.9 TeV

  • Q. Ali
  • Y. AliEmail author
  • M. Haseeb
  • M. Ajaz
Article
  • 3 Downloads

Abstract

We have studied the charged particles spectra for the pseudorapidity region of |η| < 2.5, the multiplicity of charged particles, its dependence on pT as well as on η and the relationship between average pT and charged particles multiplicity in pp collisions at \(\sqrt {\text{s}} \) = 0.9TeV. For simulations, we have used EPOS-LHC, EPOS- 1.99, QGSJETII-04 and SIBYLL-2.3c models and compared their predictions with the experimental data of ATLAS experiment. For the pT distribution, predictions of the Sibyll-2.3c are matching with the experimental data in a region of 0.5 < pT < 0.8GeV/c and EPOS-1.99 model results are near to the experimental data for 0.5 < pT < 1.5 GeV/c. For the case of average pT, EPOS-LHC and Sibyll-2.3c predictions are closer to the experimental data. For the pseudorapidity charged particle density distributions QGSJETII-04 model predictions are better describing the experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gell-Mann, 1961 CTSL-20 (1962) [Phys. Rev. 125, 1067 (1964)].Google Scholar
  2. 2.
    Y. Ne’eman, Phys. Lett. 8, 214 (1964).CrossRefGoogle Scholar
  3. 3.
    J.D. Bjorken and E.A. Paschos, Nucl. Phys. 26, 214 (1969).Google Scholar
  4. 4.
    H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. B 47, 365 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    S. Coleman and D. J. Gross, Phys. Rev. Lett. 31, 851 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    F. Abe, D. Amidei, G. Apollinari et al. (Collaboration), Phys. Rev. Lett. 62, 613 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    F. Abe, D. Amidei, G. Apollinari et al. (Collaboration), Phys. Rev. Lett. 64, 157 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    T. Pierog and K. Werner, Phys. Rev. Lett. 101, 171101 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    M. Ajaz, S. Ullah, Y. Ali, and H. Younis, Mod. Phys. Lett. A 33, 1850038 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    M. Ajaz, Y. Ali, S. Ullah, Q. Ali, and U. Tabassam, Mod. Phys. Lett. A 33, 1850079 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    S. Ullah, Y. Ali, M. Ajaz, U. Tabassam, and Q. Ali, Int. J. Mod. Phys. A 33, 1850108 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    S. Ullah, M. Ajaz, and Y. Ali, EPL 123, 31001 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    X.-N. Wang, Phys. Rev. C 61, 064910 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    U. Tabassam, Y. Ali, S. Ullah, M. Ajaz, Q. Ali, M. Suleymanov, A. S. Bhatti, and R. Suleymanov, Int. J. Mod. Phys. E 27, 1850036 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    J. Schukraft, Nucl. Phys. A 553, 31 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    J. Takahashi, Heavy Ion Collisions at the dawn of the LHC era, CERN-2013-003 (2011), p. 273; DOI: 10.5170/CERN-2013-003.273, CERN Latin-American School of High Energy Physics, Natal, Brazil.Google Scholar
  17. 17.
    J.D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High pT Jets in Hadron-Hadron Collisions, FERMILAB-Pub-82/59-THY, USA, August (1982).Google Scholar
  18. 18.
    S. Shi (STAR Collaboration), J. Phys. Conf. Ser. 422, 012002 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Aamodt, B. Abelev, A. Quintana et al. (ALICE Collaboration), Phys. Rev. Lett. 105, 252302 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    M. Ajaz, M. Tufail, and Y. Ali, Mod. Phys. Lett. A 34, 1950100 (2019).CrossRefGoogle Scholar
  21. 21.
    M. Ajaz, M. Bilal, Y. Ali, M.K. Suleymanov, and K.H. Khan, Mod. Phys. Lett. A 34, 1950090 (2019).CrossRefGoogle Scholar
  22. 22.
    T. Carliy, K. Rabbertz, and S. Schumann, arXiv:1506.03239v2 [hep-ex] (2015).Google Scholar
  23. 23.
    B. Abelev, J. Adam, D. Adamová et al. (ALICE Collaboration), Eur. Phys. J. C 73, 2662 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    T. Pierog and K. Werner, How to Relate Particle Physics and Air Shower Development: the EPOS Model. PROCEEDINGS OF THE 31st ICRC, LODZ (2009).Google Scholar
  25. 25.
    F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, EPJ Web Conf. 99, 12001 (2015).Google Scholar
  26. 26.
    T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C 92, 034906 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    K. Werner, F. M. Liu, and T. Pierog, Phys. Rev. C 74, 044902 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    M. Hladik, H. J. Drescher, S. Ostapchenko, T. Pierog, and K. Werner, Phys. Rev. Lett. 86, 3506 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Russ. Acad. Sci. Phys. 58, 1966 (1994).Google Scholar
  30. 30.
    A. B. Kaidalov and K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 39, 979 (1984).Google Scholar
  31. 31.
    S. Ostapchenko, Nucl. Phys. B–Proceedings Supplements 151, 143 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    G. Aad, E. Abat, B. Abbott et al. (ATLAS Collaboration), Phys. Lett B 688, 21 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of PhysicsCommission on Science and Technology for Sustainable Development in the South (COMSATS) UniversityIslamabadPakistan
  2. 2.Department of PhysicsAbdul Wali Khan University MardanMardanPakistan

Personalised recommendations