Skip to main content
Log in

Saturation of Exciton Absorption in CdSe/CdS Nanoplatelets under Transient Excitation Conditions

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Nonlinear absorption of light by colloidal CdSe nanoplatelets with a CdS shell is investigated under the conditions of transient single-photon generation of excitons. By changing the shell thickness, it is possible to implement either resonant excitation of light-hole and heavy-hole excitons or nonresonant excitation. The saturation of absorption by colloidal solutions of nanoplatelets is observed and attributed to the effect of exciton phase space filling. The difference between the saturation intensities for CdSe nanoplatelets with different CdS shell thicknesses is explained by the details of exciton generation and relaxation processes. An increase in absorption observed at the excitation intensity significantly exceeding the saturation intensity is explained by the processes of exciton–exciton interaction and energy exchange between heavy- and light-hole excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  2. D. Boese, W. Hofstetter, and H. Schoeller, Phys. Rev. B 66, 125315 (2002).

    Article  ADS  Google Scholar 

  3. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 168, 36 (2013).

    Article  ADS  Google Scholar 

  4. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, JETP Lett. 95, 521 (2012).

    Article  ADS  Google Scholar 

  5. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 199, 33 (2014).

    Article  ADS  Google Scholar 

  6. V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRC, Taylor and Francis Group, Boca Raton, London, New York, 2010), Chap. 6.

    Book  Google Scholar 

  7. A. M. Smirnov, M. V. Kozlova, and V. S. Dneprovskii, Opt. Spectrosc. 120, 472 (2016).

    Article  ADS  Google Scholar 

  8. V. Dneprovskii, E. Zhukov, M. Kozlova, A. Smirnov, and T. Wumaier, Moscow Univ. Phys. Bull. 67, 201 (2012).

    Article  ADS  Google Scholar 

  9. A. M. Smirnov, A. D. Golinskaya, K. V. Ezhova, V. N. Mantsevich, and V. S. Dneprovskii, JETP Lett. 104, 674 (2016).

    Article  ADS  Google Scholar 

  10. A. S. Kulagina, V. V. Danilov, V. B. Shilov, K. M. Grigorenko, V. V. Vlasov, and G. M. Ermolaeva, Opt. Spectrosc. 123, 164 (2017).

    Article  ADS  Google Scholar 

  11. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simoes Gamboa, Ann. Phys. (Berlin) 528, 272 (2016).

    Article  ADS  Google Scholar 

  12. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and Al. L. Efros, Nat. Mater. 10, 936 (2011).

    Article  ADS  Google Scholar 

  13. M. Pelton, S. Ithurria, R. D. Schaller, D. S. Dolzhikov, and D. V. Talapin, Nano Lett. 12, 6158 (2012).

    Article  ADS  Google Scholar 

  14. F. M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, ACS Nano 9, 5041 (2015).

    Article  Google Scholar 

  15. F. T. Rabouw, J. C. van der Bok, P. Spinicelli, B. Mahler, M. Nasilowski, S. Pedetti, B. Dubertret, and D. Vanmaekelbergh, Nano Lett. 16, 2047 (2016).

    Article  ADS  Google Scholar 

  16. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov, R. B. Vasil’ev, V. N. Mantsevich, and V. S. Dnep-rovskii, JETP Lett. (2019, in press).

  17. S. Ithurria and B. Dubertret, JACS Commun. 130, 16504 (2008).

    Article  Google Scholar 

  18. R. B. Vasiliev, A. I. Lebedev, E. P. Lazareva, N. N. Shlenskaya, V. B. Zaytsev, A. G. Vitukhnovsky, Y. Yao, and K. Sakoda, Phys. Rev. B 95, 165414 (2017).

    Article  ADS  Google Scholar 

  19. N. N. Schlenskaya, Y. Yao, T. Mano, T. Kuroda, A. V. Garshev, V. F. Kozlovskii, A. M. Gaskov, R. B. Vasiliev, and K. Sakoda, Chem. Mater. 29, 579 (2017).

    Article  Google Scholar 

  20. B. M. Saidzhonov, V. F. Kozlovsky, V. B. Zaytsev, and R. B. Vasiliev, J. Lumin. 209, 170 (2019).

    Article  Google Scholar 

  21. P. Horan and W. Blau, J. Opt. Soc. Am. B 7, 304 (1990).

    Article  ADS  Google Scholar 

  22. C. Flytzanis, D. Ricard, and M. C. Schanne-Klein, J. Lumin. 70, 212 (1996).

    Article  Google Scholar 

  23. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).

    Article  ADS  Google Scholar 

  24. A. Al. Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Cherguic, Appl. Phys. Lett. 90, 093104 (2007).

    Article  ADS  Google Scholar 

  25. Y. N. Hwang, S. H. Park, and D. Kim, Phys. Rev. B 59, 7285 (1999).

    Article  ADS  Google Scholar 

  26. F. Gindele, K. Hild, W. Langbein, and U. Woggon, J. Lumin. 87–89, 381 (2000).

    Article  Google Scholar 

  27. S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B 42, 11218 (1990).

    Article  ADS  Google Scholar 

  28. J. P. Zheng and H. S. Kwok, J. Opt. Soc. Am. B 9, 2047 (1992).

    Article  ADS  Google Scholar 

  29. P. Sippel, W. Albrecht, J. C. van der Bok, R. J. A. van Dijk-Moes, T. Hannappel, R. Eichberger, and D. Vanmaekelbergh, Nano Lett. 15, 2409 (2015).

    Article  ADS  Google Scholar 

  30. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).

    Article  ADS  Google Scholar 

  31. N. S. Rytova, Sov. Phys. Dokl. 10, 754 (1965).

    ADS  Google Scholar 

  32. L. V. Keldysh, JETP Lett. 29, 658 (1979).

    ADS  Google Scholar 

  33. E. A. Mulyarov and S. G. Tikhodeev, J. Exp. Theor. Phys. 84, 151 (1997).

    Article  ADS  Google Scholar 

  34. S. G. Tikhodeev, N. A. Gippius, A. L. Yablonskii, A. B. Dzyubenko, L. V. Kulik, V. D. Kulakovskii, and A. Forchel, Phys. Status Solidi A 164, 179 (1997).

    Article  ADS  Google Scholar 

  35. E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, Phys. Rev. B 62, 7420 (2000).

    Article  ADS  Google Scholar 

  36. N. A. Gippius, A. L. Yablonskii, A. B. Dzyubenko, and S. G. Tikhodeev, J. Appl. Phys. 83, 5410 (1998).

    Article  ADS  Google Scholar 

  37. L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. B 54, R2335 (1996).

    Article  ADS  Google Scholar 

  38. A. I. Ekimov, F. Hache, M. C. Schanneklein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and A. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993).

    Article  ADS  Google Scholar 

  39. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).

    Article  ADS  Google Scholar 

  40. L. T. Kunneman, M. D. Tessier, H. Heuclin, B. Dubertret, Y. V. Aulin, F. C. Grozema, J. M. Schins, and L. D. A. Siebbeles, J. Phys. Chem. Lett. 4, 3574 (2013).

    Article  Google Scholar 

  41. H. M. Gibbs, G. Khitrova, and N. Peyghambarian, Nonlinear Photonics (Springer, Berlin, Heidelberg, 1990).

    Book  Google Scholar 

  42. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, and P. W. Smith, Appl. Phys. Lett. 41, 679 (1982).

    Article  ADS  Google Scholar 

  43. G. A. Boiko, V. S. Dneprovskii, M. V. Kraevskii, K. Marinova, S. M. Oak, E. K. Silina, and V. S. Fokin, Phys. Status Solidi B 85, 111 (1978).

    Article  ADS  Google Scholar 

  44. E. Baghani, S. K. O’Leary, I. Fedin, D. V. Talapin, and M. Pelton, J. Phys. Chem. Lett. 6, 1032 (2015).

    Article  Google Scholar 

  45. A. M. Smirnov, A. D. Golinskaya, D. V. Przhiyalkovskii, M. V. Kozlova, B. M. Saidzhonov, R. B. Vasiliev, and V. S. Dneprovskii, Semiconductors 52, 1798 (2018).

    Article  ADS  Google Scholar 

  46. A. M. Smirnov, A. D. Golinskaya, M. V. Kozlova, D. V. Przhiyalkovskii, B. M. Saidzhonov, R. B. Vasiliev, and V. S. Dneprovskii, Proc. SPIE 10684, 1068421 (2018).

    Google Scholar 

  47. V. N. Mantsevich, D. S. Smirnov, A. M. Smirnov, A.D. Golinskaya, M. V. Kozlova, B. M. Saidjonov, V. S. Dneprovskii, and R. B. Vasiliev, arXiv:1807.00697 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Smirnov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 7, pp. 466–472.

This work was supported by the Russian Science Foundation, project no. 18-72-00075.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.M., Golinskaya, A.D., Zharkova, E.V. et al. Saturation of Exciton Absorption in CdSe/CdS Nanoplatelets under Transient Excitation Conditions. Jetp Lett. 109, 454–459 (2019). https://doi.org/10.1134/S0021364019070142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019070142

Navigation