JETP Letters

, Volume 109, Issue 5, pp 292–297 | Cite as

Physicochemical Mechanisms of Nanostructuring of Glass by Femtosecond Laser Pulses with the Use of Selective Etching

  • A. M. ShakhovEmail author
  • A. A. Astafiev
  • V. A. Nadtochenko
Optics and Laser Physics


Processes occurring at nanostructuring of glass irradiated by tightly focused single femtosecond laser pulses with selective chemical etching in the alkaline solution have been studied. Structures with a width up to 50 nm have been created. The dependence of the morphology and sizes of the created structures on the parameters of laser radiation and etching time has been revealed. Measurements of fluorescence of glass at the variation of the polarization and energy of a laser pulse in wide ranges have revealed the character of nonlinear absorption processes in a sample. The results have clarified the physicochemical processes in glass leading to selective chemical etching and demonstrate advantages of this method over the method of simple laser processing of glass for the creation of complex structures with subdiffraction resolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 10 (1997).CrossRefGoogle Scholar
  2. 2.
    F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, Appl. Phys. A 77, 2 (2003).Google Scholar
  3. 3.
    R. R. Gattass and E. Mazur, Nat. Photon. 2, 4 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Krüger and W. Kautek, in Polymers and Light, Ed. by T. K. Lippert (Springer, Berlin, Heidelberg, 2004), Vol. 168, p. 247.Google Scholar
  5. 5.
    C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D.M. Rayner, V. R. Bhardwaj, and P. B. Corkum, Appl. Phys. A 84, 1 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, J. Phys. Chem. C 113, 27 (2009).CrossRefGoogle Scholar
  7. 7.
    Y. Bellouard, A. Said, M. Dugan, and P. Bado, Opt. Express 12, 10 (2004).CrossRefGoogle Scholar
  8. 8.
    J. Song, J. Lin, J. Tang, Y. Liao, F. He, Z. Wang, L. Qiao, K. Sugioka, and Y. Cheng, Opt. Express 22, 12 (2014).Google Scholar
  9. 9.
    A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. 101, 16 (2004).CrossRefGoogle Scholar
  10. 10.
    A. Shakhov, A. Astafiev, A. Gulin, and V. Nadtochenko, ACS Appl. Mater. Interfaces 7, 49 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, Appl. Phys. B 81, 8 (2005).CrossRefGoogle Scholar
  12. 12.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, Phys. Rev. Lett. 97, 23 (2006).CrossRefGoogle Scholar
  13. 13.
    B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 12 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, Appl. Phys. A 62, 3 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, Appl. Phys. A 94, 4 (2009).CrossRefGoogle Scholar
  16. 16.
    A. M. Shakhov, A. A. Astafiev, N. N. Denisov, F. E. Gostev, I. V. Shelaev, A. N. Titov, and V. A. Nadtochenko, Quantum Electron. 44, 9 (2014).CrossRefGoogle Scholar
  17. 17.
    L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 3 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Cvecek, I. Miyamoto, and M. Schmidt, Opt. Express 22, 13 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Haofeng, W. Xiaolei, and Z. Hongchen, J. Phys. D: Appl. Phys. 44, 13 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. M. Shakhov
    • 1
    Email author
  • A. A. Astafiev
    • 1
  • V. A. Nadtochenko
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations