Advertisement

JETP Letters

, Volume 109, Issue 5, pp 298–302 | Cite as

Ultrafast Broadband Nonlinear Spectroscopy of a Colloidal Solution of Gold Nanoparticles

  • S. I. KudryashovEmail author
  • A. A. Samokhvalov
  • E. I. Ageev
  • V. P. Veiko
Optics and Laser Physics
  • 8 Downloads

Abstract

The generation of supercontinuum radiation at the filamentation of femtosecond laser pulses (800 nm) with a supercritical gigawatt peak power in pure water and colloidal solutions of plasmon gold nanoparticles (perturbative regime) has been studied experimentally. After correction to the extinction of the fluid behind a filament, the supercontinuum radiation yields from the active filamentation zone in water (broadband radiation source) and in colloidal solution (broadband radiation source modified by various in situ interactions with nanoparticles) have been compared and analyzed for various peak radiation powers. As a result, the proposed method of ultrafast broadband nonlinear spectroscopy has allowed the observation of effects of the saturated two-photon interband absorption of gold nanoparticles in the spectral range of supercontinuum generation and the enhancement of this generation in the range of plasmon resonance of nanoparticles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Couairon and A. Myzyrowicz, Phys. Rep. 441, 47 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. V. Chekalin and V. P. Kandidov, Phys. Usp. 56, 123 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    B. I. Afinogenov, D. S. Kopylova, K. A. Abrashitova, V. O. Bessonov, A. S. Anisimov, S. A. Dyakov, N. A. Gippius, Y. G. Gladush, A. A. Fedyanin, and A. G. Nasibulin, Phys. Rev. Appl. 9, 024027 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    W. T. Chen, A. Y. Zhu, J. Sisler, Y. W. Huang, K. M. A. Yousef, E. Lee, C. W. Qiu, and F. Capasso, Nano Lett. 18, 7801 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    R. Driben, A. Husakou, and J. Herrmann, Opt. Lett. 34, 2132 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    P. Vasa, M. Singh, R. Bernard, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, Appl. Phys. Lett. 103, 111109 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, Opt. Lett. 41, 3475 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).Google Scholar
  11. 11.
    S. G. Bezhanov, P. A. Danilov, A. A. Ionin, S. I. Kudryashov, V. N. Lednev, S. M. Pershin, A. A. Rudenko, I. N. Saraeva, L. V. Seleznev, E. S. Sunchugasheva, S. A. Uryupin, and D. A. Zayarny, Laser Phys. Lett. 13, 035302 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. I. Kudryashov
    • 1
    • 2
    Email author
  • A. A. Samokhvalov
    • 1
  • E. I. Ageev
    • 1
  • V. P. Veiko
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations