Advertisement

Reconstruction of the DOS at the End of a S/F Bilayer

  • I. V. BobkovaEmail author
  • A. M. Bobkov
Article
  • 4 Downloads

Abstract

Influence of a nonmagnetic surface on the density of states in a spin-split superconductor, which is realized on the basis of a S/F bilayer, is investigated. It is demonstrated that if the ferromagnet magnetization has a defect in the form of a domain wall in the vicinity of the surface, the superconducting density of states is reconstructed manifesting the spin-split Andreev resonances. Formation of these resonances is not connected to any superconducting order parameter inhomogeneities. Andreev reflection processes forming the resonances occur at the inhomogeneity of the spin-split gap generated by the domain wall. These resonances can be used as a spectroscopic probe of a domain wall presence and motion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Grein, M. Eschrig, G. Metalidis, and G. Schon, Phys. Rev. Lett. 102, 227005 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    M. Alidoust, J. Linder, G. Rashedi, T. Yokoyama, and A. Sudbo, Phys. Rev. B 81, 014512 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Z. Shomali, M. Zareyan, and W. Belzig, New J. Phys. 13, 083033 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    P.M.R. Brydon, Y. Asano, and C. Timm, Phys. Rev. B 83, 180504 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. Moor, A. F. Volkov, and K.B. Efetov, Phys. Rev. B 92, 180506 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    I. Gomperud and J. Linder, Phys. Rev. B 92, 035416 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    K. Halterman, O.T. Valls, and C.-T. Wu, Phys. Rev. B 92, 174516 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    I.V. Bobkova and Yu. S. Barash, Pisma v ZhETF 80, 563 (2004).Google Scholar
  9. 9.
    M. Alidoust and K. Halterman, New J. Phys. 17, 033001 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    S. Jacobsen, I. Kulagina, and J. Linder, Sci. Rep. 6, 23926 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    F. Konschelle, I.V. Tokatly, and F. S. Bergeret, Phys. Rev. B 94, 014515 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    X. Montiel and M. Eschrig, Phys. Rev. B 98, 104513 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Ouassou, J. W. A. Robinson, and J. Linder, arXiv:1810.08623.Google Scholar
  14. 14.
    F. S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. Lett. 86, 4096 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    F. S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. B 69, 174504 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    F. S. Bergeret, A. Levy-Yeyati, and A. Martin-Rodero, Phys. Rev. B 72, 064524 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    F. S. Bergeret, A.F. Volkov, and K.B. Efetov, Rev. Mod. Phys. 4, 1321 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    P. Machon, M. Eschrig, and W. Belzig, Phys. Rev. Lett. 110, 047002 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    A. Ozaeta, P. Virtanen, F. Bergeret, and T. Heikkila, Phys. Rev. Lett. 112, 057001 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    S. Kolenda, M. Wolf, and D. Beckmann, Phys. Rev. Lett. 116, 097001 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    S. Kolenda, P. Machon, D. Beckmann, and W. Belzig, Beilstein J. Nanotechnol. 7, 1579 (2016).CrossRefGoogle Scholar
  23. 23.
    F. Giazotto, J.W.A. Robinson, J. S. Moodera, and F. S. Bergeret, Appl. Phys. Lett. 105, 062602 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    F. Giazotto, T. Heikkila, and F. Bergeret, Phys. Rev. Lett. 114, 067001 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    J. Linder and M.E. Bathen, Phys. Rev. B 93, 224509 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    I. V. Bobkova and A.M. Bobkov, Phys. Rev. B 96, 104515 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    D. Huertas-Hernando, Y.V. Nazarov, and W. Belzig, Phys. Rev. Lett. 88, 047003 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    F. Giazotto and F. S. Bergeret, Appl. Phys. Lett. 102, 162406 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    F. Giazotto and F. S. Bergeret, Appl. Phys. Lett. 102, 132603 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    F. Giazotto, F. Taddei, R. Fazio, and F. Beltram, Appl. Phys. Lett. 89, 022505 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    F. Giazotto and F. Taddei, Phys. Rev. B 77, 132501 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    F. Giazotto, T.T. Heikkila, A. Luukanen, A.M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    S. Kawabata, A. Ozaeta, A. S. Vasenko, F. W. J. Hekking, and F. S. Bergeret, Appl. Phys. Lett. 103, 032602 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    F. Giazotto, P. Solinas, A. Braggio, and F. Bergeret, Phys. Rev. Appl. 4, 044016 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkila, Rev. Mod. Phys. 90, 041001 (2018).ADSCrossRefGoogle Scholar
  36. 36.
    E. Strambini, V.N. Golovach, G. De Simoni, J. S. Moodera, F. S. Bergeret, and F. Giazotto, Phys. Rev. Materials 1, 054402 (2017).ADSCrossRefGoogle Scholar
  37. 37.
    A. A. Golubov, M.Yu. Kupriyanov, and M. Siegel, JETP Lett. 81, 180 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    I. V. Bobkova, A.M. Bobkov, and W. Belzig, in preparation.Google Scholar
  39. 39.
    S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    T. Lofwander, V. S. Shumeiko, and G. Wendin, Supercond. Sci. Technol. 14, R53 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    A.A. Golubov, M.Y. Kupriyanov, and E. Ilichev, Rev. Mod. Phys. 76, 411 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    T. Tokuyasu, J.A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823 (1988).ADSCrossRefGoogle Scholar
  43. 43.
    M. Fogelstrom, Phys. Rev. B 62, 11812 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    I.V. Bobkova, P. Hirschfeld, and Yu. S. Barash, Phys. Rev. Lett. 94, 037005 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    B.M. Andersen, I.V. Bobkova, P. J. Hirschfeld, and Yu. S. Barash, Phys. Rev. B 72, 184510 (2005).ADSCrossRefGoogle Scholar
  46. 46.
    T. E. Golikova, F. Hubler, D. Beckmann, I. E. Batov, T.Yu. Karminskaya, M.Yu. Kupriyanov, A.A. Golubov, and V. V. Ryazanov, Phys. Rev. B 86, 064416 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    F. S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. Lett. 86, 3140 (2001).ADSCrossRefGoogle Scholar
  48. 48.
    A. Cottet, D. Huertas-Hernando, W. Belzig, and Yu.V. Nazarov, Phys. Rev. B 80, 184511 (2009) [Erratum: A. Cottet, D. Huertas-Hernando, W. Belzig, and Yu.V. Nazarov, Phys. Rev. B 83, 139901(E) (2011)].ADSCrossRefGoogle Scholar
  49. 49.
    M. Eschrig, A. Cottet, W. Belzig, and J. Linder, New J. Phys. 17, 083037 (2015).ADSCrossRefGoogle Scholar
  50. 50.
    M. Eschrig, Phys. Rev. B 61, 9061 (2000).ADSCrossRefGoogle Scholar
  51. 51.
    M. Eschrig, Phys. Rev. B 80, 134511 (2009).ADSCrossRefGoogle Scholar
  52. 52.
    P.G. de Gennes and D. Saint-James, Phys. Lett. 4, 151 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsChernogolovkaRussia

Personalised recommendations