Advertisement

JETP Letters

, Volume 108, Issue 11, pp 763–767 | Cite as

Two-Qubit Operation on Majorana Qubits in Ordinary-Qubit Chains

  • Yu. MakhlinEmail author
  • S. Backens
  • A. Shnirman
Quantum Informatics
  • 17 Downloads

Abstract

Majorana zero modes can be simulated in structures based on spin or quasi-spin degrees of freedom, e.g., Josephson-qubit chains. Braiding of Majorana degrees of freedom is realized using T-junctions supplied with an auxiliary spin (ancilla). Motivated by prospective experiments, we analyze the braiding in the spin representation, which provides the basis for the analysis of imperfections characteristic to the spin and qubit designs. The result of the braiding operation is straightforwardly found for the initial basis states of the two qubits and the ancilla, up to phase factors. Here, we fix these phase factors and thus describe the complete two-qubit operation. This result is relevant for physical simulation of the Majorana qubits in Josephson-qubit chains and other spin or qubit structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, Nat. Rev. Mater. 3, 52 2018.ADSCrossRefGoogle Scholar
  2. 2.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 2008.ADSCrossRefGoogle Scholar
  3. 3.
    S. Das Sarma, M. Freedman, and C. Nayak, NJP Quantum Inform. 1, 15001 2015.ADSCrossRefGoogle Scholar
  4. 4.
    A. Yu. Kitaev, Ann. Phys. 303, 2 2003.ADSCrossRefGoogle Scholar
  5. 5.
    A. Yu. Kitaev, Phys. Usp. 44, 131 2001.ADSCrossRefGoogle Scholar
  6. 6.
    N. Read and D. Green, Phys. Rev. B 61, 10267 2000.ADSCrossRefGoogle Scholar
  7. 7.
    D. Ivanov, Phys. Rev. Lett. 86, 268 2001.ADSCrossRefGoogle Scholar
  8. 8.
    J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7, 412 2011.CrossRefGoogle Scholar
  9. 9.
    M. Pino, A. M. Tsvelik, and L. B. Ioffe, Phys. Rev. Lett. 115, 197001 2015.ADSCrossRefGoogle Scholar
  10. 10.
    S. Backens, A. Shnirman, Yu. Makhlin, Y. Gefen, J. E. Mooij, and G. Schön, Phys. Rev. B 96, 195402 2017.ADSCrossRefGoogle Scholar
  11. 11.
    J. Alicea, Rep. Prog. Phys. 75, 076501 2012.ADSCrossRefGoogle Scholar
  12. 12.
    S. Backens, A. Shnirman, and Yu. Makhlin, arXiv:1810.02590 (2018).Google Scholar
  13. 13.
    A. M. Tsvelik, Phys. Rev. Lett. 110, 147202 2013.ADSCrossRefGoogle Scholar
  14. 14.
    C. Hutter, A. Shnirman, Yu. Makhlin, and G. Schoen, Europhys. Lett. 74, 1088 2006.ADSCrossRefGoogle Scholar
  15. 15.
    P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, Phys. Rev. X 3, 041018 2013.Google Scholar
  16. 16.
    N. Crampé and A. Trombettoni, Nucl. Phys. B 871, 526 2013.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Condensed Matter Physics LaboratoryNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  3. 3.Institut für Theorie der Kondensierten MaterieKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations