Skip to main content
Log in

Bragg Diffraction in Atomic Systems in Quantum Degeneracy Conditions

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Studies of the scattering of light on systems of identical atoms under conditions of their quantum degeneracy have been reviewed. The formation of a periodic spatial structure caused by the interference of material waves is responsible for coherent resonance scattering similar to Bragg diffraction on regular spatial inhomogeneities. The interference of macroscopic material waves that is observed in experiments with a Bose–Einstein condensate forms a dielectric medium in the region of optical transparency of the sample that has the properties of a photonic crystal. Common characteristics and differences between the scattering of light on atomic systems under quantum degeneracy conditions and scattering on one-dimensional atomic lattices where the positions of atoms are described by classical statistics have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Polzik, A. S. Sorensen, and K. Hammerer, Rev. Mod. Phys. 82, 1041 (2010).

    Article  ADS  Google Scholar 

  2. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, Nature (London, U.K.) 452, 67 (2008).

    Article  ADS  Google Scholar 

  3. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

    Article  ADS  Google Scholar 

  4. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Nat. Phys. 6, 894 (2010).

    Article  Google Scholar 

  5. X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, Nat. Phys. 8, 517 (2012).

    Article  Google Scholar 

  6. D. V. Kupriyanov, I. M. Sokolov, and M. D. Havey, Phys. Rep. 671, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, Phys. Rev. Lett. 114, 143004 (2015).

    Article  ADS  Google Scholar 

  8. M. G. Bason, R. Heck, M. Napolitano, O. Elíasson, R.Müller, A. Thorsen, W.-Zh. Zhang, J. J. Arlt, and J. F. Sherson, J. Phys. B: At. Mol. Opt. Phys. 51, 175301 (2018).

    Article  ADS  Google Scholar 

  9. D. J. Brown, A. V. H. McPhail, D. H. White, D. Baillie, S. K. Ruddell, and M. D. Hoogerland, Phys. Rev. A 98, 013606 (2018).

    Article  ADS  Google Scholar 

  10. D. S. Naik, G. Kuyumjyan, D. Pandey, P. Bouyer, and A. Bertoldi, Quantum Sci. Technol. 3, 045009 (2018).

    Article  ADS  Google Scholar 

  11. V. D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A. J. Kollár, J. Keeling, and B. L. Lev, Phys. Rev. X 8, 011002 (2018).

    Google Scholar 

  12. A. V. Turlapov and M. Yu. Kagan, J. Phys.: Condens. Matter 29, 383004 (2017).

    ADS  Google Scholar 

  13. T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, Nature (London, U.K.) 528, 530 (2015).

    Article  ADS  Google Scholar 

  14. S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, Phys. Rev. Lett. 117, 203003 (2016).

    Article  ADS  Google Scholar 

  15. K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, Phys. Rev. Lett. 117, 138501 (2016).

    Article  ADS  Google Scholar 

  16. T. Laudat, V. Dugrain, T. Mazzoni, M.-Z. Huang, C. L. Garrido Alzar, A. Sinatra, P. Rosenbusch, and J. Reichel, New J. Phys. 20, 073018 (2018).

    Article  ADS  Google Scholar 

  17. D. Schneble, Y. Torii, M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, Science (Washington, DC, U. S.) 300, 475 (2003).

    Article  ADS  Google Scholar 

  18. A. Hilliard, F. Kaminski, R. le Targat, C. Olausson, E. S. Polzik, and J. H. Müller, Phys. Rev. A 78, 051403(R) (2008).

    Google Scholar 

  19. B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, Phys. Rev. Lett. 115, 073003 (2015).

    Article  ADS  Google Scholar 

  20. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, Science (Washington, DC, U. S.) 354, 1021 (2016).

    Article  ADS  Google Scholar 

  21. M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletić, M. Greiner, and M. D. Lukin, Science (Washington, DC, U. S.) 354, 1024 (2016).

    Article  ADS  Google Scholar 

  22. E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Phys. Rev. Lett. 118, 113601 (2017).

    Article  ADS  Google Scholar 

  23. F. Le Kien, V. I. Balykin, and K. Hakuta, Phys. Rev. A 70, 063403 (2004).

    Article  ADS  Google Scholar 

  24. N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, Phys. Rev. Lett. 117, 133603 (2016).

    Article  ADS  Google Scholar 

  25. H. L. Sorensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sorensen, J. H. Müller, E. S. Polzik, and J. Appel, Phys. Rev. Lett. 117, 133604 (2016).

    Article  ADS  Google Scholar 

  26. V. M. Ezhova, L. V. Gerasimov, and D. V. Kupriyanov, J. Phys.: Conf. Ser. 769, 012045 (2016).

    Google Scholar 

  27. V. A. Pivovarov, A. S. Sheremet, L. V. Gerasimov, V.M. Porozova, N. V. Corzo, J. Laurat, and D. V. Kupriyanov, Phys. Rev. A 97, 023827 (2018).

    Article  ADS  Google Scholar 

  28. V. M. Porozova, L. V. Gerasimov, M. D. Havey, and D. V. Kupriyanov, Phys. Rev. A 97, 053805 (2018).

    Article  ADS  Google Scholar 

  29. M. G. Moore and P. Meystre, Phys. Rev. Lett. 83, 5202 (1999).

    Article  ADS  Google Scholar 

  30. Yu. A. Avetisyan and E. D. Trifonov, Phys. Usp. 58, 286 (2015).

    Article  ADS  Google Scholar 

  31. N. N. Bogolubov, J. Phys. (USSR) 11, 23 (1947).

    MathSciNet  Google Scholar 

  32. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions. Basic Processes and Applications (Wiley, Weinheim, 1992).

    Book  Google Scholar 

  33. E. M. Lifshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part II (Nauka, Moscow, 1978; Pergamon, Oxford, 1980).

    Google Scholar 

  34. G. Placzek, The Rayleigh and Raman Scattering (Lawrence Radiation Laboratory, Berkeley, 1959).

    Google Scholar 

  35. V. B. Beresteskii, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1981).

    Google Scholar 

  36. I. E. Dzyaloshinskii and L. P. Pitaevskii, Sov. Phys. JETP 9, 1282 (1959).

    Google Scholar 

  37. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).

    MATH  Google Scholar 

  38. M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science (Washington, DC, U. S.) 275, 637 (1997).

    Article  Google Scholar 

  39. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1959).

    MATH  Google Scholar 

  40. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kupriyanov.

Additional information

Original Russian Text © V.M. Porozova, V.A. Pivovarov, L.V. Gerasimov, D.V. Kupriyanov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 10, pp. 726–735.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porozova, V.M., Pivovarov, V.A., Gerasimov, L.V. et al. Bragg Diffraction in Atomic Systems in Quantum Degeneracy Conditions. Jetp Lett. 108, 714–721 (2018). https://doi.org/10.1134/S0021364018220137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018220137

Navigation