Hidden Fermi Surface in KxFe2−ySe2: LDA + DMFT Study

  • I. A. Nekrasov
  • N. S. Pavlov


In this paper we provide theoretical LDA+DMFT support of recent angle-resolved photoemission spectroscopy (ARPES) observation of the so-called hidden hole-like band and corresponding hidden Fermi surface sheet near Γ-point in the K0.62Fe1.7Se2 compound. To some extent this is a solution to the long-standing riddle of Fermi surface absence around Γ-point in the KxFe2−ySe2 class of iron chalcogenide superconductors. In accordance with the experimental data Fermi surface was found near the Γ-point within LDA+DMFT calculations. Based on the LDA+DMFT analysis in this paper it is shown that the largest of the experimental Fermi surface sheets is actually formed by a hybrid Fe-3d(xy, xz, yz) quasiparticle band. It is also shown that the Fermi surface is not a simple circle as DFT-LDA predicts, but has (according to the LDA+DMFT) a more complicated “propeller”-like structure due to correlations and multiorbital nature of the KxFe2−ySe2 materials. While the smallest experimental Fermi surface around Γ-point is in some sense fictitious, since it is formed by the summation of the intensities of the spectral function associated with “propeller” loupes and is not connected to any of quasiparticle bands.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Sadovskii, Usp. Fiz. Nauk 178, 1243 (2008) [Physics Uspekhi 51, 1201 (2008)].CrossRefGoogle Scholar
  2. 2.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    D.C. Johnson, Adv. Phys. 59, 83 (2010).Google Scholar
  4. 4.
    P. J. Hirschfeld, M.M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kordyuk, Fizika Nizkikh Temperatur 38, 1119 (2012) [Low Temp. Phys. 38, 888 (2012)].Google Scholar
  7. 7.
    M.V. Sadovskii, E. Z. Kuchinskii, and I.A. Nekrasov, JMMM 324 3481, (2012).Google Scholar
  8. 8.
    I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A.A. Slobodchikov, Fizika Nizkikh Temperatur 42, 1137 (2016) [Low Temp. Phys. 42, 891 (2016)].Google Scholar
  9. 9.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, Pis’ma v ZhETF 105, 354 (2017) [JETP Letters 105, 370 (2017)].Google Scholar
  10. 10.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, ZhETF 153, 590 (2018) [JETP 126, 485 (2018)].Google Scholar
  11. 11.
    M. V. Sadovskii, Usp. Fiz. Nauk 186, 1035 (2016) [Physics Uspekhi 59, 947 (2016)].CrossRefGoogle Scholar
  12. 12.
    T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, Phys. Rev. Lett. 106, 187001 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H.C. Xu, J. Jiang, B.P. Xie, J.J. Ying, X.F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nature Mater. 10, 273 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    J. J. Lee, F.T. Schmitt, R.G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z.K. Liu, M. Hashimoto, Y. Zhang, D.H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    L. Zhao, D. Mou, Sh. Liu et al. (Collaboration), Phys. Rev. B 83, 140508(R) (2011).Google Scholar
  16. 16.
    M. Sunagawa, K. Terashima, and T. Hamada et al. (Collaboration), J. Phys. Society of Japan 85, 073704 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, Pis’ma v ZhETF 97, 18 (2013) [JETP Lett. 97, 15 (2013)].Google Scholar
  18. 18.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, ZhETF 144, 1061 (2013) [JETP 117, 926 (2013)].Google Scholar
  19. 19.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, Pis’ma v ZhETF 95, 659 (2012) [JETP Letters 95, 581 (2012)].Google Scholar
  20. 20.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, ZhETF 143, 713 (2013) [JETP 116, 620 (2013)].Google Scholar
  21. 21.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    J. Guo, Sh. Jin, G. Wang, Sh. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010).Google Scholar
  25. 25.
    P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    K. Haule, Phys. Rev. B 75, 155113 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    E. Gull, A. J. Millis, A. I. Lichtenstein, A.N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. Ferrero, O. Parcollet, TRIQS: a Toolbox for Research in Interacting Quantum Systems,
  29. 29.
    M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    M. Yi, D. H. Lu, R. Yu, S.C. Riggs, J.-H. Chu, B. Lv, Z.K. Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C.W. Chu, I.R. Fisher, Q. Si, and Z.-X. Shen, Phys. Rev. Lett. 110, 067003 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).ADSCrossRefGoogle Scholar
  33. 33.
    M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, J. Supercond. Nov. Magn. 29, 1117 (2016).CrossRefGoogle Scholar
  35. 35.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, Pis’ma ZhETF 102, 30 (2015) [JETP Lett. 102, 26 (2015)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of ElectrophysicsRussian Academy of Sciences, Ural BranchEkaterinburgRussia

Personalised recommendations