Skip to main content

3D Uniform Manipulation of NV Centers in Diamond Using a Dielectric Resonator Antenna

Abstract

Ensembles of nitrogen-vacancy color centers in diamond hold promise for ultra-precise magnetometry, competing with superconducting quantum interference device detectors. By utilizing the advantages of dielectric materials, such as very low losses for electromagnetic field, with the potential for creating high Q-factor resonators with strong concentration of the field within it, we implemented a dielectric resonator antenna for coherent manipulation of a large ensemble of nitrogen-vacancy centers in diamond. We reached average Rabi frequency of 10 MHz in a volume of 7 mm3 with a standard deviation of less than 1% at a moderate pump power. The obtained result enables use of large volume low nitrogen-vacancy concentration diamond plates in modern nitrogen-vacancy magnetometers thus improving sensitivity via larger coherence time and higher optical detected magnetic resonance contrast.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008).

    Article  Google Scholar 

  2. 2.

    M. Grinolds, S. Hong, P. Maletinsky, and L. Luan, Nat. Phys. 9, 12 (2013).

    Article  Google Scholar 

  3. 3.

    T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  4. 4.

    H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, Nat. Phys. 11, 393 (2015).

    Article  Google Scholar 

  5. 5.

    I. V. Fedotov, N. A. Safronov, Y. G. Ermakova, M. E. Matlashov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. V. Belousov, and A. M. Zheltikov, Sci. Rep. 5, 15737 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, Sci. Rep. 4, 5362 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park, and M. D. Lukin, Phys. Rev. Lett. 113, 197601 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    M. S. Grinolds, M. Warner, K. de Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, Nat. Nanotechnol. 9, 279 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. de Greve, R. Evans, R. Gertner, E. Bersin, C. Müller, L. McGuinness, F. Jelezko, R. L. Walsworth, H. Park, and M. D. Lukin, Science (Washington, DC, U. S.) 351, 836 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Nat. Phys. 7, 459 (2011).

    Article  Google Scholar 

  11. 11.

    E. H. Chen, H. A. Clevenson, K. A. Johnson, L.M.Pham, D. R. Englund, P. R. Hemmer, and D. A. Braje, Phys. Rev. A 95, 053417 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    S. Ali Momenzadeh, F. F. de Oliveira, P. Neumann, D. D. Bhaktavatsala Rao, A. Denisenko, M. Amjadi, Z. Chu, S. Yang, N. B. Manson, M. W. Doherty, and J. Wrachtrup, Phys. Rev. Appl. 6, 024026 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    T. Fukui, Yu Doi, T. Miyazaki, et al., Appl. Phys. Express 7, 055201 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F.Dolde, P. Neumann, M. W. Doherty, N. B. Manson, J. Isoya, and J. Wrachtrup, Appl. Phys. Lett. 104, 102407 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    O. R. Rubinas, V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, V. N. Sorokin, A. N. Smolyaninov, V. G. Vins, A. P. Yelisseyev, and A. V. Akimov, arXiv:1806.09816 (2018).

    Google Scholar 

  16. 16.

    V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, Phys. Rev. B 80, 115202 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, Nature (London, U.K.) 555, 351 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    E. Bauch, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, P. Kehayias, S. Singh, and R. L. Walsworth, Phys. Rev. X 8, 031025 (2018).

    Google Scholar 

  19. 19.

    K. D. Jahnke, B. Naydenov, T. Teraji, S. Koizumi, T. Umeda, J. Isoya, and F. Jelezko, Appl. Phys. Lett. 101, 012405 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    K. Bayat, J. Choy, M. Farrokh Baroughi, S. Meesala, and M. Loncar, Nano Lett. 14, 1208 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    M. Mrözek, J. Mlynarczyk, D. S. Rudnicki, and W. Gawlik, Appl. Phys. Lett. 107, 013505 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, Rev. Sci. Instrum. 87, 053904 (2016.

    Google Scholar 

  23. 23.

    J. Herrmann, M. A. Appleton, K. Sasaki, Y. Monnai, T. Teraji, K. M. Itoh, and E. Abe, Appl. Phys. Lett. 109, 1 (2016).

    Article  Google Scholar 

  24. 24.

    D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, Hoboken, NJ, 2005).

    Google Scholar 

  25. 25.

    K.-M. Luk and K.-W. Leung, Dielectric Resonator Antennas (Research Studies, Baldock, Hertfordshire, UK, 2003).

    Google Scholar 

  26. 26.

    C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. (Wiley, Hoboken, NJ, 2016).

    Google Scholar 

  27. 27.

    L. Huitema and T. Monediere, in Dielectric Materials, Ed. by M. A. Silaghi (InTech, Rijeka, 2012). https://www.Intechopen.Com/Books/Dielectric-Material/Dielectric-Materials-for-Compact-Dielectric-Resonator-Antenna-Applications.

    Google Scholar 

  28. 28.

    A. S. Abdellatif, A. Taeb, N. Ranjkesh, E. Gigoyan, E. Nenasheva, S. Safavi-Naeini, S. Gigoyan, E. Nenasheva, and S. Safavi-Naeini, Int. J. Microwave Wireless Technol. 8, 33 (2016).

    Article  Google Scholar 

  29. 29.

    V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, Eur. Phys. J. D 70, 269 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    K. Tahara, H. Ozawa, T. Iwasaki, N. Mizuochi, and M. Hatano, Appl. Phys. Lett. 107, (2015).

    Google Scholar 

  31. 31.

    T. Ishikawa, K. M. C. Fu, C. Santori, V. M. Acosta, R. G. Beausoleil, H. Watanabe, S. Shikata, and K. M. Itoh, Nano Lett. 12, 2083 (2012).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Kapitanova.

Additional information

The article is published in the original.

Supplementary materials are available for this article at https://doi.org/10.1134/S0021364018210014 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kapitanova, P., Soshenko, V.V., Vorobyov, V.V. et al. 3D Uniform Manipulation of NV Centers in Diamond Using a Dielectric Resonator Antenna. Jetp Lett. 108, 588–595 (2018). https://doi.org/10.1134/S0021364018210014

Download citation