Features of the Formation of the Spin Polarization of an Alkali Metal at the Resolution of Hyperfine Sublevels in the 2S1/2 State

Abstract

The optical orientation of the angular momenta of alkali atoms in the presence of a buffer gas (molecular nitrogen) has been studied experimentally. It has been shown that, even at a low concentration of molecular nitrogen in the cell, the excitation of 133Cs atoms from the lower hyperfine level with F = 3, which belongs to the ground 2S1/2 state, results in a larger amplitude of the magnetic resonance than the excitation from the hyperfine level with F = 4. This result has been theoretically explained under the assumption that the spin state of the alkali atomic nucleus does not change at collision with a nitrogen molecule, which is accompanied by a nonradiative transition of the alkali atom from the excited 2P1/2 state to the ground 2S1/2 state.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. Bell and A. Bloom, Phys. Rev. 107, 1559 (1957).

    ADS  Article  Google Scholar 

  2. 2.

    S. Appelt, A. Ben-Amar Baranga, A. Young, and W. Happer, Phys. Rev. A 59, 2078 (1999).

    ADS  Article  Google Scholar 

  3. 3.

    Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, Sci. Rep. 6, 36547 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    T. Kubo, Appl. Opt. 11, 1521 (1972).

    ADS  Article  Google Scholar 

  5. 5.

    A. Kastler, Usp. Fiz. Nauk 93, 5 (1967).

    Article  Google Scholar 

  6. 6.

    E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).

    Article  Google Scholar 

  7. 7.

    E. N. Popov, S. P. Voskoboinikov, S. M. Ustinov, K. A. Barantsev, and A. N. Litvinov, J. Exp. Theor. Phys. 125, 1005 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    I. Savukov, T. Karaulanov, and M. G. Boshier, Appl. Phys. Lett. 104, 023504 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Y. Gao, H. Dong, X. Wang, X. Wang, and L. Yin, Chin. Phys. B 26, 067801 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    D. Budker and D. Kimball, Optical Magnetometry (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  11. 11.

    A. K. Vershovskii, Yu. A. Litmanovich, A. S. Pazgalev, and V. G. Peshekhonov, Girosk. Navig. 26, 55 (2018).

    Article  Google Scholar 

  12. 12.

    A. Weis, Europhys. News 43, 20 (2012).

    Article  Google Scholar 

  13. 13.

    E. Donley, in Proceedings of the 9th Annual IEEE Conference on Sensors, Waikoloa, HI, Nov. 1–4, 2010, p.17.

  14. 14.

    D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).

    Article  Google Scholar 

  15. 15.

    M. Larsen and M. Bulatowicz, in Proceedings of the 2012 IEEE International Frequency Control Symposium Proceedings FCS 2012.

  16. 16.

    T. Kornack, R. Ghosh, and M. Romalis, Phys. Rev. Lett. 95, 230801 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    E. B. Aleksandrov, A. K. Vershovskii, and A. S. Pazgalev, Tech. Phys. 51, 919 (2006).

    Article  Google Scholar 

  18. 18.

    A. K. Vershovskii, S. P. Dmitriev, and A. S. Pazgalev, Tech. Phys. 58, 1481 (2013).

    Article  Google Scholar 

  19. 19.

    Y. Nagata, S. Kurokawa, and A. Hatakeyama, J. Phys. B: At. Mol. Opt. Phys. 50, 105002 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, Appl. Phys. Lett. 105, 192406 (2014).

    Article  Google Scholar 

  21. 21.

    K. Zhao, M. Schaden, and Z. Wu, Phys. Rev. A 81, 042903 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    M. Romalis and G. Cates Phys. Rev. A 58, 3004 (1998).

    ADS  Article  Google Scholar 

  23. 23.

    A. Hatakeyama, Y. Enomoto, K. Komaki, and Y. Yamazaki, Phys. Rev. Lett. 95, 253003 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    L. Chen, B. Zhoua, G. Lei, W. Wu, Y. Zhai, Z. Wang, and J. Fang, AIP Adv. 7, 115101 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, Phys. Rev. A 22, 3092 (1984).

    ADS  Article  Google Scholar 

  26. 26.

    X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber, and W. Happer, Phys. Rev. A 31, 260 (1985).

    ADS  Article  Google Scholar 

  27. 27.

    W. Happer, Rev. Mod. Phys. 44, 170 (1972).

    ADS  Article  Google Scholar 

  28. 28.

    T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).

    ADS  Article  Google Scholar 

  29. 29.

    W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (Wiley-VCH, Weinheim, 2010).

    Google Scholar 

  30. 30.

    J. Fang, S. Wan, and H. Yuan, Appl. Opt. 52, 7220 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    T. Scholtes, V. Schultze, R. Isselsteijn, S. Woetzel, and H. Meyer, Rhys. Rev. A 84, 043416 (2011).

    ADS  Google Scholar 

  32. 32.

    T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. Meyer, Phys. Rev. A 94, 013403 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    G. A. Pitz, D. E. Wertepny, and G. P. Perram, Phys. Rev. A 80, 062718 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    N. M. Pomerantsev, V. M. Ryzhkov, and G. V. Skrotskii, Physical Principles of Quantum Magnetometry (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  35. 35.

    S. Skipetrov, I. Sokolov, and M. Havey, Phys. Rev. A 94, 013825 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    S. Roof, K. Kemp, M. Havey, I. Sokolov, and D. Kupriyanov, Opt. Lett. 40, 1137 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 90, 012511 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    D. A. Steck, 2001. http://steck.us/alkalidata.

  39. 39.

    V. A. Bobrikova, E. N. Popov, K. A. Barantsev, S. P. Voskoboinikov, and A. N. Litvinov, JETP Lett. 107, 690 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    F. Franz and J. Franz, Phys. Rev. 148, 82 (1966).

    ADS  Article  Google Scholar 

  41. 41.

    A. Sieradzan and F. A. Franz, Phys. Rev. A 25, 2985 (1982).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. N. Popov.

Additional information

Original Russian Text © E.N. Popov, V.A. Bobrikova, S.P. Voskoboinikov, K.A. Barantsev, S.M. Ustinov, A.N. Litvinov, A.K. Vershovskii, S.P. Dmitriev, V.A. Kartoshkin, A.S. Pazgalev, M.V. Petrenko, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 8, pp. 543–548.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, E.N., Bobrikova, V.A., Voskoboinikov, S.P. et al. Features of the Formation of the Spin Polarization of an Alkali Metal at the Resolution of Hyperfine Sublevels in the 2S1/2 State. Jetp Lett. 108, 513–518 (2018). https://doi.org/10.1134/S0021364018200122

Download citation