Skip to main content
Log in

Experimental Simulation of the Generation of a Vortex Flow on a Water Surface by a Wave Cascade

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The generation of a vortex flow by waves on a water surface, which simulate an energy cascade in a system of gravity waves at frequencies of 3, 4, 5, and 6 Hz, has been studied experimentally. It has been found that pumping is accompanied by the propagation of waves on the surface at different angles to the fundamental mode and by a nonlinear interaction between waves resulting in the generation of new harmonics. It has been shown that large-scale flows are formed by modes of the lowest frequency of 3 Hz intersecting at acute angles. The energy distribution of the vortex motion can be described by a power-law function of the wavenumber and is independent of the energy distribution in a system of surface waves. The energy coming to large-scale vortex flows directly from the wave system is transferred to small scales. A direct rather than inverse energy flux is established in the system of vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Filatov, M. Yu. Brazhnikov, and A. A. Levchenko, Instrum. Exp. Tech. 56, 731 (2013).

    Article  Google Scholar 

  2. M. Yu. Brazhnikov, G. V. Kolmakov, and A. A. Levchenko, J. Exp. Theor. Phys. 95, 447 (2002).

    Article  ADS  Google Scholar 

  3. S. V. Filatov, A. A. Levchenko, M. Yu. Brazhnikov, and L. P. Mezhov-Deglin, Instrum. Exp. Tech. (in press).

  4. V. Zakharov, V. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992), Vol.1.

  5. E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).

    Article  ADS  Google Scholar 

  6. H. Xia, M. Shats, and H. Punzmann, Europhys. Lett. 91, 14002 (2010).

    Article  ADS  Google Scholar 

  7. C. Falcon, E. Falcon, and U. Bortolozzo, Europhys. Lett. 86, 14002 (2009).

    Article  ADS  Google Scholar 

  8. M.-T. Westra, Patterns and Weak Turbulence in Surface Waves (Tech. Univ. Eindhoven, Eindhoven, 2001).

    Google Scholar 

  9. L. V. Abdurakhimov, M. Yu. Brazhnikov, A. A. Levchenko, I. A. Remizov, and S. V. Filatov, Phys. Usp. 55, 818 (2012).

    Article  Google Scholar 

  10. M. Yu. Brazhnikov, A. A. Levchenko, L. P. Mezhov-Deglin, and I. A. Remizov, JETP Lett. 100, 669 (2015).

    Article  ADS  Google Scholar 

  11. N. Francois, H. Xia, H. Punzmann, and M. Shats, Phys. Rev. Lett. 110, 194501 (2013).

    Article  ADS  Google Scholar 

  12. N. Francois, H. Xia, H. Punzmann, S. Ramsden, and M. Shats, Phys. Rev. X 4, 021021 (2014).

    Google Scholar 

  13. R. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Xia and N. Francois, Phys. Fluids 29, 111107 (2017).

    Article  ADS  Google Scholar 

  15. S. V. Filatov, M. Yu. Brazhnikov, and A. A. Levchenko, JETP Lett. 102, 432 (2015).

    Article  ADS  Google Scholar 

  16. S. V. Filatov, V. M. Parfenyev, S. S. Vergeles, M. Yu. Brazhnikov, A. A. Levchenko, and V. V. Lebedev, Phys. Rev. Lett. 116, 054501 (2016).

    Article  ADS  Google Scholar 

  17. O. N. Mesquita, S. Kane, and J. P. Gollub, Phys. Rev. A 45, 3700 (1992).

    Article  ADS  Google Scholar 

  18. V. M. Parfenyev and S. S. Vergeles, Phys. Rev. Fluids 3, 064702 (2018).

    Article  ADS  Google Scholar 

  19. S. V. Filatov, D. A. Khramov, and A. A. Levchenko, JETP Lett. 106, 330 (2017).

    Article  ADS  Google Scholar 

  20. W. Thielicke and E. J. Stamhuis, J. Open Res. Software 2, 30 (2014).

    Article  Google Scholar 

  21. S. V. Filatov, S. A. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Levchenko.

Additional information

Original Russian Text © S.V. Filatov, A.V. Orlov, M.Yu. Brazhnikov, A.A. Levchenko, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 8, pp. 549–557.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, S.V., Orlov, A.V., Brazhnikov, M.Y. et al. Experimental Simulation of the Generation of a Vortex Flow on a Water Surface by a Wave Cascade. Jetp Lett. 108, 519–526 (2018). https://doi.org/10.1134/S0021364018200080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018200080

Navigation