Abstract
The generation of a vortex flow by waves on a water surface, which simulate an energy cascade in a system of gravity waves at frequencies of 3, 4, 5, and 6 Hz, has been studied experimentally. It has been found that pumping is accompanied by the propagation of waves on the surface at different angles to the fundamental mode and by a nonlinear interaction between waves resulting in the generation of new harmonics. It has been shown that large-scale flows are formed by modes of the lowest frequency of 3 Hz intersecting at acute angles. The energy distribution of the vortex motion can be described by a power-law function of the wavenumber and is independent of the energy distribution in a system of surface waves. The energy coming to large-scale vortex flows directly from the wave system is transferred to small scales. A direct rather than inverse energy flux is established in the system of vortices.
Similar content being viewed by others
References
S. V. Filatov, M. Yu. Brazhnikov, and A. A. Levchenko, Instrum. Exp. Tech. 56, 731 (2013).
M. Yu. Brazhnikov, G. V. Kolmakov, and A. A. Levchenko, J. Exp. Theor. Phys. 95, 447 (2002).
S. V. Filatov, A. A. Levchenko, M. Yu. Brazhnikov, and L. P. Mezhov-Deglin, Instrum. Exp. Tech. (in press).
V. Zakharov, V. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992), Vol.1.
E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).
H. Xia, M. Shats, and H. Punzmann, Europhys. Lett. 91, 14002 (2010).
C. Falcon, E. Falcon, and U. Bortolozzo, Europhys. Lett. 86, 14002 (2009).
M.-T. Westra, Patterns and Weak Turbulence in Surface Waves (Tech. Univ. Eindhoven, Eindhoven, 2001).
L. V. Abdurakhimov, M. Yu. Brazhnikov, A. A. Levchenko, I. A. Remizov, and S. V. Filatov, Phys. Usp. 55, 818 (2012).
M. Yu. Brazhnikov, A. A. Levchenko, L. P. Mezhov-Deglin, and I. A. Remizov, JETP Lett. 100, 669 (2015).
N. Francois, H. Xia, H. Punzmann, and M. Shats, Phys. Rev. Lett. 110, 194501 (2013).
N. Francois, H. Xia, H. Punzmann, S. Ramsden, and M. Shats, Phys. Rev. X 4, 021021 (2014).
R. Kraichnan, Phys. Fluids 10, 1417 (1967).
H. Xia and N. Francois, Phys. Fluids 29, 111107 (2017).
S. V. Filatov, M. Yu. Brazhnikov, and A. A. Levchenko, JETP Lett. 102, 432 (2015).
S. V. Filatov, V. M. Parfenyev, S. S. Vergeles, M. Yu. Brazhnikov, A. A. Levchenko, and V. V. Lebedev, Phys. Rev. Lett. 116, 054501 (2016).
O. N. Mesquita, S. Kane, and J. P. Gollub, Phys. Rev. A 45, 3700 (1992).
V. M. Parfenyev and S. S. Vergeles, Phys. Rev. Fluids 3, 064702 (2018).
S. V. Filatov, D. A. Khramov, and A. A. Levchenko, JETP Lett. 106, 330 (2017).
W. Thielicke and E. J. Stamhuis, J. Open Res. Software 2, 30 (2014).
S. V. Filatov, S. A. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.V. Filatov, A.V. Orlov, M.Yu. Brazhnikov, A.A. Levchenko, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 8, pp. 549–557.
Rights and permissions
About this article
Cite this article
Filatov, S.V., Orlov, A.V., Brazhnikov, M.Y. et al. Experimental Simulation of the Generation of a Vortex Flow on a Water Surface by a Wave Cascade. Jetp Lett. 108, 519–526 (2018). https://doi.org/10.1134/S0021364018200080
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0021364018200080