Advertisement

High quality factor mechanical resonance in a silicon nanowire

  • D. E. Presnov
  • S. Kafanov
  • A. A. Dorofeev
  • I. V. Bozhev
  • A. S. Trifonov
  • Yu. A. Pashkin
  • V. A. Krupenin
Article
  • 22 Downloads

Abstract

Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mode were measured at a temperature of 20mK for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler–Bernoulli theory. The measured internal quality factor of the 5 μm-long resonator, 3.62 × 104, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity ~ 6 × 10 −20 gHz −1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005); https://doi.org/10.1063/1.1927327. ADSCrossRefGoogle Scholar
  2. 2.
    W.-M. Zhang, K.-M. Hu, Z.K. Peng, and G. Meng, Sensors 15, 26478 (2015); https://doi.org/10.3390/s151026478. CrossRefGoogle Scholar
  3. 3.
    B. Arash, J.-W. Jiang, and T. Rabczuk, Appl. Phys. Rev. 2, 021301 (2015); https://doi.org/10.1063/1.4916728. ADSCrossRefGoogle Scholar
  4. 4.
    Y. Greenberg, Yu. A. Pashkin, and E.V. Ilichev, Physics-Uspekhi 55(4), 1382 (2012); https://doi.org/10.3367/UFNr.0182.201204c.0407. CrossRefGoogle Scholar
  5. 5.
    V. V. Shorokhov, D.E. Presnov, S.V. Amitonov, Yu.A. Pashkin, and V. A. Krupenin, Nanoscale 9(2), 613 (2017). https://doi.org/10.1039/C6NR07258E. CrossRefGoogle Scholar
  6. 6.
    G. Lovat, B. Choi, D.W. Paley, M. L. Steigerwald, L. Venkataraman, and X. Roy, Nat. Nanotechnology 12(2), 1050 (2017); https://doi.org/10.1038/nnano.2017.156. ADSCrossRefGoogle Scholar
  7. 7.
    E. S. Soldatov, V.V. Khanin, A. S. Trifonov, S.P. Gubin, V. V. Kolesov, D.E. Presnov, S. A. Iakovenko, G.B. Khomutov, and A. N. Korotkov, Physics-Uspekhi 41(2), 202 (1998); https://dx.doi.org/10.1070/PU1998v041n02ABEH000364. ADSCrossRefGoogle Scholar
  8. 8.
    S.T. Bartsch, M. Arp, and A.M. Ionescu, IEEE Journal of the Electron Devices Society 2(2), 8 (2014); https://doi.org/10.1109/JEDS.2013.2295246. CrossRefGoogle Scholar
  9. 9.
    B. Ilic, Y. Yang, and H.G. Craighead, Appl. Phys. Lett. 85(13), 2604 (2004); https://doi.org/10.1063/1.1794378. ADSCrossRefGoogle Scholar
  10. 10.
    H. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001); https://doi.org/10.1063/1.1418256. ADSCrossRefGoogle Scholar
  11. 11.
    X. Zhao, J. M. Tsai, H. Cai, X.M. Ji, J. Zhou, M.H. Bao, Y.P. Huang, D. L. Kwong, and A. Q. Liu, Opt. Express 20(8), 8535 (2012); https://doi.org/10.1364/OE.20.008535. ADSCrossRefGoogle Scholar
  12. 12.
    R. G. Knobel and A.N. Cleland, Nature 424, 291 (2003); https://doi.org/10.1038/nature01773. ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Shevyrin, A.G. Pogosov, M.V. Budantsev, A.K. Bakarov, A. I. Toropov, E. E. Rodyakina, and A. A. Shklyaev, Appl. Phys. Lett. 106, 183110 (2015). https://doi.org/10.1063/1.4920932. ADSCrossRefGoogle Scholar
  14. 14.
    A. Naik, O. Buu, M. D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, and K. C. Schwab, Nature 443, 193 ((2006)); https://www.nature.com/articles/nature05027.ADSCrossRefGoogle Scholar
  15. 15.
    J. Teufel, T. Donner, D. Li, J.W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J.D. Wittaker, K. W. Lehnert, and R.W. Simmonds, Nature 475, 359 (2011); https://www.nature.com/articles/nature10261.ADSCrossRefGoogle Scholar
  16. 16.
    K. Harrabi, Yu. A. Pashkin, O. V. Astafiev, S. Kafanov, T. F. Li, and J. S. Tsai, Appl. Phys. A 108(1), 7 (2012); https://doi.org/10.1007/s00339-012-6981-8. ADSCrossRefGoogle Scholar
  17. 17.
    D. I. Bradley, R. George, A.M. Guénault, R.P. Haley, S. Kafanov, M.T. Noble, Yu.A. Pashkin, G.R. Pickett, M. Poole, J. R. Prance, M. Sarsby, R. Schanen, V. Tsepelin, T. Wilcox, and D. E. Zmeev, Sci. Rep. 7, 4876 (2017); https://doi.org/10.1038/s41598-017-04842-y. ADSCrossRefGoogle Scholar
  18. 18.
    D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, and J.M. Parpia, Appl. Phys. Lett. 75(7), 920 (1999); https://doi.org/10.1063/1.124554. ADSCrossRefGoogle Scholar
  19. 19.
    K. L. Ekinci, X.M.H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84(22), 4469 (2004); https://doi.org/10.1063/1.1755417. ADSCrossRefGoogle Scholar
  20. 20.
    A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69(18), 2653 (1996); https://doi.org/10.1063/1.117548. ADSCrossRefGoogle Scholar
  21. 21.
    K. Mori, in: Silicon-On-Insulator (SOI) Technology, Woodhead Publishing, Singapore (2014), ch. 14, p. 435; https://doi.org/10.1533/9780857099259.2.435. CrossRefGoogle Scholar
  22. 22.
    D. E. Presnov, S.V. Amitonov, P.A. Krutitskii, V. V. Kolybasova, I.A. Devyatov, V. A. Krupenin, and I. I. Soloviev, Beilstein J. Nanotechnol. 4, 330 (2013); https://doi.org/10.3762/bjnano.4.38. CrossRefGoogle Scholar
  23. 23.
    D.E. Presnov, S. V. Amitonov, and V. A. Krupenin, Russian Microelectronics 41(5), 364 (2012); https://doi.org/10.1134/S1063739712050034. CrossRefGoogle Scholar
  24. 24.
    M. Rubtsova, G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, and A. Egorov, Biosensors 2016, Procedia Technology 27, 234 (2017); https://doi.org/10.1016/j.protcy.2017.04.099. Google Scholar
  25. 25.
    A. S. Trifonov, D.E. Presnov, I.V. Bozhev, D.A. Evplov, V. Desmaris, and V.A. Krupenin, Ultramicroscopy 179, 33 (2017); https://doi.org/10.1016/j.ultramic.2017.03.030. CrossRefGoogle Scholar
  26. 26.
    A. N. Cleland, in: Foundations of nanomechanics, Springer, Berlin (2003); https://doi.org/10.1007/978-3-662-05287-7. CrossRefGoogle Scholar
  27. 27.
    A. H. Nayfeh and D.T. Mook, in: Nonlinear Oscillations, WILEY–VCH Verlag GmbH & Co, KGaA (2007); https://doi.org/10.1002/9783527617586. zbMATHGoogle Scholar
  28. 28.
    H.W. Ch. Postma, I. Kozinsky, A. Husain, and M. L. Roukes, Appl. Phys. Lett. 86, 223105 (2005); https://doi.org/10.1063/1.1929098. ADSCrossRefGoogle Scholar
  29. 29.
    F. Tajaddodianfar, M.R.H. Yazdi, and H.N. Pishkenari, Microsyst. Technol. 23, 1913 (2017); https://doi.org/10.1007/s00542-016-2947-7. CrossRefGoogle Scholar
  30. 30.
    L. Laurent, J. J. Yon, J. S. Moulet, P. Imperinetti, and L. Duraffourg, Sensors and Actuators A: Phys. 263, 326 (2017); https://doi.org/10.1016/j.sna.2017.06.027. CrossRefGoogle Scholar
  31. 31.
    T. F. Li, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J.S. Tsai, Appl. Phys. Lett. 92, 043112 (2008); https://doi.org/10.1063/1.2838749. ADSCrossRefGoogle Scholar
  32. 32.
    E. Buks and B. Yurke, Phys. Rev. E 74, 046619 (2017); https://doi.org/10.1103/PhysRevE.74.046619. ADSCrossRefGoogle Scholar
  33. 33.
    A.N. Cleland and M. L. Roukes, Sensors and Actuators 72(3), 256 (1999); https://doi.org/10.1016/S0924-4247(98)00222-2. CrossRefGoogle Scholar
  34. 34.
    L. Yu, H. Pajouhi, M.R. Nelis, J. F. Rhoads, and S. Mohammadi, IEEE Transactions on Nanotechnology 11(1), 1093 (2012); https://doi.org/10.1109/TNANO.2012.2212028. ADSCrossRefGoogle Scholar
  35. 35.
    G. Zolfagharkhani, A. Gaidarzhy, S. Shim, R. L. Badzey, and P. Mohanty, Phys. Rev. B 72, 224101 (2005); https://doi.org/10.1103/PhysRevB.72.224101. ADSCrossRefGoogle Scholar
  36. 36.
    J. Sulkko, M. Sillanpää, P. Häkkinen, L. Lechner, M. Helle, A. Fefferman, J. Parpia, and P. Hakonen, NanoLetters 10, 4884 (2010); https://doi.org/10.1021/nl102771p. ADSCrossRefGoogle Scholar
  37. 37.
    F. Hoehne, Yu. A. Pashkin, O. Astafiev, L. Faoro, L. B. Ioffe, Y. Nakamura, and J. S. Tsai, Phys. Rev. B 81, 184112 (2010); https://doi.org/10.1103/PhysRevB.81.184112. ADSCrossRefGoogle Scholar
  38. 38.
    M. Imboden and P. Mohanty, Phys. Rev. B 79, 125424 (2009); https://doi.org/10.1103/PhysRevB.79.125424. ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. E. Presnov
    • 1
    • 2
  • S. Kafanov
    • 3
  • A. A. Dorofeev
    • 1
  • I. V. Bozhev
    • 1
  • A. S. Trifonov
    • 1
    • 2
  • Yu. A. Pashkin
    • 3
    • 4
  • V. A. Krupenin
    • 1
  1. 1.Quantum Technology Centre, Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.D.V. Skobeltsyn Institute of Nuclear PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of PhysicsLancaster UniversityLancasterUnited Kingdom
  4. 4.Lebedev Physical InstituteMoscowRussia

Personalised recommendations