Skip to main content
Log in

Localization of Surface Plasmon Waves in Hybrid Photodetectors with Subwavelength Metallic Arrays

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The spectral characteristics of the hole photocurrent in plasmon photodetectors based on Ge/Si heterostructures with Ge quantum dots combined with regular arrays of subwavelength apertures of various shapes in a gold film on the semiconductor surface are investigated. Dispersion relations characterizing the propagation of surface plasmon waves along the metal–semiconductor interface are determined from the dependences of the photocurrent on the angle of incidence of light. It is established that the plasmonic enhancement of the photocurrent in rectangular aperture array is suppressed as compared to that in circular and square aperture arrays. It is found that, in hybrid structures with rectangular apertures, there exists a range of wave vectors where the energy of surface plasmons is independent of the wave vector of incident radiation. The results are explained by the excitation of dipole modes localized at rectangular apertures with a large aspect ratio by light waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).

    Article  ADS  Google Scholar 

  2. J. Zhang, L. Zhang, and W. Xu, J. Phys. D: Appl. Phys. 45, 113001 (2012).

    Article  ADS  Google Scholar 

  3. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, Rep. Prog. Phys. 75, 036501 (2012).

    Article  ADS  Google Scholar 

  4. S. Law, V. Podolskiy, and D. Wasserman, Nanophotonics 2, 103 (2013).

    Article  ADS  Google Scholar 

  5. A. Degiron and T. W. Ebbesen, J. Opt. A: Pure Appl. Opt. 7, S90 (2005).

    Article  ADS  Google Scholar 

  6. C. Genet and T. W. Ebbesen, Nature (London, U.K.) 445, 39 (2007).

    Article  ADS  Google Scholar 

  7. S. Hayashi and T. Okamoto, J. Phys. D: Appl. Phys. 45, 433001 (2012).

    Article  ADS  Google Scholar 

  8. V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996).

    Article  ADS  Google Scholar 

  9. J. Phillips, J. Appl. Phys. 91, 4590 (2002).

    Article  ADS  Google Scholar 

  10. S. C. Lee, S. Krishna, and S. R. J. Brueck, Opt. Express 17, 23160 (2009).

    Article  ADS  Google Scholar 

  11. S. C. Lee, S. Krishna, and S. R. J. Brueck, Appl. Phys. Lett. 97, 021112 (2010).

    Article  ADS  Google Scholar 

  12. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, Nano Lett. 10, 1704 (2010).

    Article  ADS  Google Scholar 

  13. G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, Semicond. Sci. Technol. 28, 105005 (2013).

    Article  ADS  Google Scholar 

  14. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, and A. V. Dvurechenskii, J. Appl. Phys. 122, 133101 (2017).

    Article  ADS  Google Scholar 

  15. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Appl. Phys. Lett. 112, 171107 (2018).

    Article  ADS  Google Scholar 

  16. H. Cao and A. Nahata, Opt. Express 12, 3664 (2004).

    Article  ADS  Google Scholar 

  17. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).

    Article  ADS  Google Scholar 

  18. K. L. van der Molen, K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).

    Article  ADS  Google Scholar 

  19. M. W. Tsai, T. H. Chuang, H. Y. Chang, and S.-C. Lee, Appl. Phys. Lett. 89, 093102 (2006).

    Article  ADS  Google Scholar 

  20. J.-Y. Chu, T.-J. Wang, J.-T. Yeh, M.-W. Lin, Y.-C. Chang, and J.-K. Wang, Appl. Phys. A 89, 387 (2007).

    Article  ADS  Google Scholar 

  21. A. V. Dvurechenskii and A. I. Yakimov, in Advances in Semiconductor Nanostructures, Ed. by A. V. Latyshev, A. V. Dvurechenskii, and A. L. Aseev (Elsevier, Amsterdam, 2017), p.59.

  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London, U.K.) 391, 667 (1998).

    Article  ADS  Google Scholar 

  23. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

    Article  ADS  Google Scholar 

  24. H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).

    Article  Google Scholar 

  25. T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, Appl. Phys. Lett. 94, 201109 (2009).

    Article  ADS  Google Scholar 

  26. A. Degiron, H. F. Lezec, N. Yamamoto, and T. W. Ebbesen, Opt. Commum. 239, 61 (2004).

    Article  ADS  Google Scholar 

  27. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, Mater. Res. Express 3, 105032 (2016).

    Article  ADS  Google Scholar 

  28. A. N. Sofronov, L. E. Vorobjev, D. A. Firsov, V. Yu. Panevin, R. M. Balagula, P. Werner, and A. A. Tonkikh, Superlatt. Microstruct. 87, 53 (2015).

    Article  ADS  Google Scholar 

  29. A. A. Bloshkin, A. I. Yakimov, and A. V. Dvurechenskii, in Proceedings of the 26th International Symposium on Nanostructures: Physics and Technology, Minsk, Belarus, June 18–22, 2018, p. 106.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yakimov.

Additional information

Original Russian Text © A.I. Yakimov, V.V. Kirienko, A.V. Dvurechenskii, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 6, pp. 399–403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimov, A.I., Kirienko, V.V. & Dvurechenskii, A.V. Localization of Surface Plasmon Waves in Hybrid Photodetectors with Subwavelength Metallic Arrays. Jetp Lett. 108, 374–378 (2018). https://doi.org/10.1134/S0021364018180157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018180157

Navigation