Skip to main content
Log in

Sphaleron Transition Rate in Lattice Gluodynamics

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The sphaleron transition rate in gluodynamics at the temperature T /Tc = 1.24 has been calculated by lattice simulation. The calculations involve the Kubo formula, which relates the sphaleron transition rate to the correlation function of the topological charge density. The gradient flow method has been used to calculate the correlation function of the topological charge density. The Kubo formula has been inverted by the Backus–Gilbert method. The results have been compared to those obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Callan, Jr., R. F. Dashen, and D. J. Gross, Phys. Lett. B 63, 334 (1976).

    Article  ADS  Google Scholar 

  2. C. G. Callan, Jr., R. F. Dashen, and D. J. Gross, Phys. Lett. B 63, 357 (1976).

    Article  Google Scholar 

  3. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976).

    Article  ADS  Google Scholar 

  4. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 353 (1976).

    Article  Google Scholar 

  5. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59, 85 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59, 350 (1975).

    Article  Google Scholar 

  7. E. V. Shuryak, Phys. Lett. B 79, 135 (1978).

    Article  ADS  Google Scholar 

  8. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

    Article  ADS  Google Scholar 

  9. S. L. Adler, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  10. S. L. Adler, Phys. Rev. 177, 241 (1969).

    Article  Google Scholar 

  11. J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).

    Article  ADS  Google Scholar 

  12. S. Yu. Khlebnikov and M. E. Shaposhnikov, Nucl. Phys. B 308, 885 (1988).

    Article  ADS  Google Scholar 

  13. L. D. McLerran, E. Mottola, and M. E. Shaposhnikov, Phys. Rev. D 43, 2027 (1991).

    Article  ADS  Google Scholar 

  14. V. V. Braguta and A. Yu. Kotov, Phys. Rev. D 93, 105025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  16. I. Montvay and G. Munster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  17. H. B. Meyer, Eur. Phys. J. A 47, 86 (2011).

    Article  ADS  Google Scholar 

  18. G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and J.-I. Skullerud, J. High Energy Phys. 02, 186 (2015).

    Article  ADS  Google Scholar 

  19. D. L. Boyda, V. V. Braguta, M. I. Katsnelson, and M. V. Ulybyshev, Phys. Rev. B 94, 085421 (2016).

    Article  ADS  Google Scholar 

  20. H. B. Meyer, Phys. Rev. D 76, 101701 (2007).

    Article  ADS  Google Scholar 

  21. N. Astrakhantsev, V. Braguta, and A. Kotov, J. High Energy Phys. 04, 101 (2017).

    Article  ADS  Google Scholar 

  22. N. Yu. Astrakhantsev, V. V. Braguta, and A. Yu. Kotov, J. High Energy Phys. 09, 082 (2015).

    Article  Google Scholar 

  23. H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).

    Article  ADS  Google Scholar 

  24. N. Yu. Astrakhantsev, V. V. Braguta, and A. Yu. Kotov, arxiv:1804.02382.

  25. Z. V. Khaidukov, M. S. Lukashov, and Yu. A. Simonov, arxiv:1806.09407.

  26. N. O. Agasian, M. S. Lukashov, and Yu. A. Simonov, Eur. Phys. J. A 53, 138 (2017).

    Article  ADS  Google Scholar 

  27. M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, and H. Suzuki, Phys. Rev. D 94, 114512 (2016).

    Article  ADS  Google Scholar 

  28. M. Lüscher, J. High Energy Phys. 08, 071 (2010); J. High Energy Phys. 03, 092(E) (2014).

    Article  Google Scholar 

  29. M. Cè, C. Consonni, G. P. Engel, and L. Giusti, Phys. Rev. D 92, 074502 (2015).

    Article  ADS  Google Scholar 

  30. C. Bonati and M. D’Elia, Phys. Rev. D 89, 105005 (2014).

    Article  ADS  Google Scholar 

  31. G. Backus and F. Gilbert, Geophys. J. Int. 16, 169 (1968).

    Article  ADS  Google Scholar 

  32. G. Backus and F. Gilbert, Philos. Trans. R. S. London, Ser. A 266 (1173), 123 (1970).

    Article  ADS  Google Scholar 

  33. G. D. Moore and M. Tassler, J. High Energy Phys. 02, 105 (2011).

    Article  ADS  Google Scholar 

  34. E.-M. Ilgenfritz and H. Panagopoulos, Phys. Lett. B 258, 415 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kotov.

Additional information

Original Russian Text © A.Yu. Kotov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 6, pp. 374–378.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, A.Y. Sphaleron Transition Rate in Lattice Gluodynamics. Jetp Lett. 108, 352–355 (2018). https://doi.org/10.1134/S0021364018180078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018180078

Navigation