Skip to main content
Log in

Superexchange Nonresonant Tunneling Current across a Molecular Wire

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A modified superexchange model for the formation of nonresonant tunnel current through a molecular wire consisting of a regular chain and terminal units is developed. Under conditions of weak mixing of the localized terminal molecular orbitals with the delocalized orbitals of regular chain, the explicit expressions for the tunneling current are obtained and the conditions for the applicability of the superexchange model are found. It is shown that in limiting cases, the attenuation factor for the tunneling current coincides with that used for analysis of experimental data within the framework of the rectangular barrier model or the “deep” tunneling model. Using the modified superexchange model, the experimental data on the dependence of the currentvoltage characteristics of the N-alkanedithiol molecular wire on the number of C–C bonds are interpreted, and the conditions are formulated for which the simplest model of a rectangular barrier with a tunneling effective electron mass can be used for the analysis of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Carter, Molecular Electronic Devices (Marcel Dekker, New York, 1982).

    Google Scholar 

  2. A. Nitzan, Ann. Rev. Phys. Chem. 52, 681 (2001).

    Article  ADS  Google Scholar 

  3. J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, Singapore, 2010).

    Book  Google Scholar 

  4. B. K. Pathem, S. A. Claridge, Y. B. Zheng, and P. S. Weiss, Ann. Rev. Phys. Chem. 64, 605 (2013).

    Article  ADS  Google Scholar 

  5. M. Ratner, Nat. Technol. 8, 377 (2013).

    Google Scholar 

  6. N. A. Zimbovskaya and M. R. Perderson, Phys. Rep. 509, 1 (2014).

    Article  ADS  Google Scholar 

  7. J. L. Zhang, J. Q. Zhong, J. D. Lin, W. P. Hu, K. Wu, G. Q. Xu, A. T. Wee, and W. Chen, Chem. Soc. Rev. 44, 2998 (2015).

    Article  Google Scholar 

  8. Special Issue, Ed. by P. Hänggi, M. Ratner, and S. Yaliraki, Chem. Phys. 281, 111 (2002).

  9. S. V. Aradhya and L. Venkataraman, Nat. Nanotechnol. 8, 399 (2013).

    Article  ADS  Google Scholar 

  10. K. V. Raman, Appl. Phys. Rev. 1 (3), 1 (2014).

    Article  ADS  Google Scholar 

  11. E. G. Petrov, V. May, and P. Hänggi, Phys. Rev. B 73, 045408 (2006).

    Article  ADS  Google Scholar 

  12. B. D. Fainberg, M. Jouravlev, and A. Nitzan, Phys. Rev. B 76, 245329 (2007).

    Article  ADS  Google Scholar 

  13. E. G. Petrov, Ye. V. Shevchenko, V. May, and P. Hänggi, J. Chem. Phys. 134, 204701 (2011).

    Article  ADS  Google Scholar 

  14. M. Galperin and M. A. Nitzan, Phys. Chem. Chem. Phys. 14, 9421 (2012).

    Article  Google Scholar 

  15. E. G. Petrov, V. O. Leonov, V. May, and P. Hänggi, Chem. Phys. 407, 53 (2012).

    Article  Google Scholar 

  16. E. G. Petrov, V. O. Leonov, and V. Snitsarev, J. Chem. Phys. 138, 184709 (2013).

    Article  ADS  Google Scholar 

  17. V. A. Leonov and E. G. Petrov, JETP Lett. 97, 549 (2013).

    Article  ADS  Google Scholar 

  18. Y. Chang, Y. Zelinskyy, and V. May, Phys. Rev. B 88, 155426 (2013).

    Article  ADS  Google Scholar 

  19. D. Xiang, X. Wang, C. Jia, T. Lee, and X. Guo, Chem. Rev. 116, 4318 (2016).

    Article  Google Scholar 

  20. E. G. Petrov, V. O. Leonov, and Ye. V. Shevchenko, JETP 125 (5), 856 (2017).

    Article  ADS  Google Scholar 

  21. M. Baghbanzadeh, C. M. Bowers, D. Rappoport, T. Zaba, M. Gonidec, M. H. Al-Sayah, P. Cyganik, A. Aspuru-Guzik, and G. M. Whitesides, Ang. Chem. Int. Ed. 54, 14743 (2015).

    Article  Google Scholar 

  22. M. Baghbanzadeh, C. M. Bowers, D. Rappoport, T. Zaba, L. Yuan, K. Kang, K.-C. Liao, M. Gonidec, P. Rothemund, P. Cyganik, A. Aspuru-Guzik, and G. M. Whitesides, J. Am. Chem. Soc. 139, 7624 (2017).

    Article  Google Scholar 

  23. X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, L. A. Nagahara, and S. M. Lindsay, J. Phys. Chem. B 106, 8609 (2002).

    Article  Google Scholar 

  24. K. H. Muller, Phys. Rev. B 73, 045403 (2006).

    Article  ADS  Google Scholar 

  25. F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 128, 15874 (2006).

    Article  Google Scholar 

  26. F. C. Simeone, H. J. Yoon, M. M. Thuo, J. R. Barber, B. Smith, and G. M. Whitesides, J. Am. Chem. Soc. 135, 18131 (2013).

    Article  Google Scholar 

  27. J. M. Seminario, C. E. de la Cruz, and P. A. Derosa, J. Am. Chem. Soc. 123, 5616 (2001).

    Article  Google Scholar 

  28. V. B. Engelkes, J. M. Beebe, and C. D. Frisbie, J. Am. Chem. Soc. 126, 14287 (2004).

    Article  Google Scholar 

  29. E. Wierzbinski, X. Yin, K. Werling, and D. H. Waldeck, J. Phys. Chem. B 117, 4431 (2013).

    Article  Google Scholar 

  30. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  ADS  Google Scholar 

  31. J. Selzer, A. Salomon, and D. Cahen, J. Phys. Chem. B 106, 10432 (2002).

    Article  Google Scholar 

  32. H. M. McConnel, J. Phys. Chem. 35, 508 (1961).

    Article  Google Scholar 

  33. J. Jortner, M. Bixon, A. A. Voityuk, and N. Rösch, J. Phys. Chem. A 108, 7599 (2002).

    Article  Google Scholar 

  34. C. R. Treadway, M. G. Hill, and J. K. Barton, Chem. Phys. 281, 409 (2002).

    Article  Google Scholar 

  35. M. A. Rampi and G. M. Whitesides, Chem. Phys. 281, 373 (2002).

    Article  Google Scholar 

  36. F. C. Simeone and M. A. Rampi, Chimia 64, 362 (2010).

    Article  Google Scholar 

  37. E. G. Petrov, Ya. R. Zelinskyy, V. May, and P. Hänggi, J. Chem. Phys. 127, 084709 (2007).

    Article  ADS  Google Scholar 

  38. M. Büttiker and R. Landauer, Phys. Rev. A 23, 1397 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, New York, 1995).

    Book  Google Scholar 

  40. W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, J. Chem. Phys. 109, 2874 (1998).

    Article  ADS  Google Scholar 

  41. E. G. Petrov, I. S. Tolokh, A. A. Demidenko, and V. V. Gorbach, Chem. Phys. 193, 237 (1995).

    Article  Google Scholar 

  42. E. G. Petrov, Int. J. Quant. Chem. 16, 133 (1979).

    Article  Google Scholar 

  43. S. Elke and C. J. Carlos, Molecular Electronics: An Introduction in Theory and Experiment, 2nd ed., Vol. 15 of Nanoscience and Nanotechnology (World Scientific, Singapore, 2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Petrov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 5, pp. 322–331.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, E.G. Superexchange Nonresonant Tunneling Current across a Molecular Wire. Jetp Lett. 108, 302–311 (2018). https://doi.org/10.1134/S0021364018170101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018170101

Navigation