Asymmetric Tunneling Conductance and the non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems

  • V. R. Shaginyan
  • A. Z. Msezane
  • G. S. Japaridze
  • V. A. Stephanovich
  • Y. S. Leevik


Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the non- Fermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau–Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V. This is because the particle-hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle-hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V. This asymmetry can be observed when a strongly correlated metal is in its normal, superconducting or pseudogap states. We show that the asymmetric part of the dynamic conductance does not depend on temperature provided that the metal is in its superconducting or pseudogap states. In normal state the asymmetric part diminishes at rising temperatures. Under the application of magnetic field the metal transits to the Landau–Fermi liquid state and the differential tunneling conductivity becomes a symmetric function of V. These findings are in good agreement with recent experimental observations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).Google Scholar
  2. 2.
    V.R. Shaginyan, JETP Lett. 81, 222 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    P. W. Anderson and N.P. Ong, J. Phys. Chem. Solids 67, 1 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. Randeria, R. Sensarma, N. Trivedi, and F. Zhang, Phys. Rev. Lett. 95, 137001 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    V.R. Shaginyan and K.G. Popov, Phys. Lett. A 361, 406 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    V.R. Shaginyan, K.G. Popov, V.A. Stephanovich, and E. V. Kirichenko, J. Alloys and Compounds 442, 29 (2007).CrossRefGoogle Scholar
  7. 7.
    G. Deutscher, Rev. Mod. Phys. 77, 109 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    V.R. Shaginyan, M.Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    M.Ya. Amusia, K. G. Popov, V.R. Shaginyan, and V. A. Stephanovich, Theory of Heavy-Fermion Compounds, Springer Series in Solid-State Sciences, Springer, Heidelberg (2015), v. 182.Google Scholar
  10. 10.
    V.A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  11. 11.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  12. 12.
    V.A. Khodel, V.R. Shaginyan, and V.V. Khodel, Phys. Rep. 249, 1 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    G. E. Volovik, JETP Lett. 107, 516 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    F. Arnold, J. Nyéki, and J. Saunders, JETP Lett. 107, 577 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    C. Xu and L. Balents, arXiv:1803.08057.Google Scholar
  17. 17.
    T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä, arXiv:1805.01039.Google Scholar
  18. 18.
    B. Lian, Z. Wang, and B.A. Bernevig, arXiv:1807.04382.Google Scholar
  19. 19.
    B. Roy and V. Juricic, arXiv:1803.11190.Google Scholar
  20. 20.
    S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich, and S. Wirth, Nature 474, 362 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Seiro, L. Jiao, S. Kirchner, S. Hartmann, S. Friedemann, C. Krellner, C. Geibel, Q. Si, F. Steglich, and S. Wirth, arXiv:1711.05151.Google Scholar
  22. 22.
    J. Paglione, M.A. Tanatar, D.G. Hawthorn, E. Boaknin, R.W. Hill, F. Ronning, M. Sutherland, L. Taillefer, C. Petrovic, and P. C. Canfield, Phys. Rev. Lett. 91, 246405 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    F. Ronning, C. Capan, A. Bianchi, R. Movshovich, A. Lacerda, M. F. Hundley, J.D. Thompson, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. B 71, 104528 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    F. Ronning, C. Capan, E.D. Bauer, J.D. Thompson, J.L. Sarrao, and R. Movshovich, Phys. Rev. B 73, 064519 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    W. A. Harrison, Phys. Rev. 123, 85 (1961).ADSCrossRefGoogle Scholar
  26. 26.
    W.K. Park, L.H. Greene, J. L. Sarrao, and J.D. Thompson, Phys. Rev. B 72, 052509 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    S. Piano, F. Bobba, A. De Santis, F. Giubileo, A. Scarfato, and A.M. Cucolo, J. Phys. Conf. Ser. 43, 1123 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    S. Wirth, Y. Prots, M. Wedel, S. Ernst, S. Kirchner, Z. Fisk, J.D. Thompson, F. Steglich, and Y. Grin, J. Phys. Soc. Japan 83, 061009 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    G. Pristàs, M. Reiffers, E. Bauer, A.G.M. Jansen, and D. K. Maude, Phys. Rev. B 78, 235108 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. R. Shaginyan
    • 1
  • A. Z. Msezane
    • 1
  • G. S. Japaridze
    • 2
  • V. A. Stephanovich
    • 3
  • Y. S. Leevik
    • 4
  1. 1.Petersburg Nuclear Physics Institute of National Research Center “Kurchatov Institute”GatchinaRussia
  2. 2.Clark Atlanta UniversityAtlantaUSA
  3. 3.Institute of PhysicsOpole UniversityOpolePoland
  4. 4.National Research University Higher School of EconomicsSt. PetersburgRussia

Personalised recommendations