Skip to main content
Log in

Antiferromagnetic Resonance in GdB6

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 20 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole−dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kasuya, J. Magn. Magn. Mater. 174, L28 (1997).

    Article  ADS  Google Scholar 

  2. M. Amara and R.-M. Galéra, Phys. Rev. Lett. 108, 026402 (2012).

    Article  ADS  Google Scholar 

  3. B. R Coles, T. Cole, J. Lambe, and N. Laurance, Proc. Phys. Soc. 79, 84 (1962).

    Article  ADS  Google Scholar 

  4. Z. Fisk, R. H Taylor, and B. R. Coles, J. Phys. C: Solid State Phys. 4, L292 (1971).

    Article  ADS  Google Scholar 

  5. D. E. Miller and H. Hacker, Jr., Solid State Commun. 9, 881 (1971).

    Article  ADS  Google Scholar 

  6. G. Sperlich, K. H. Janneck, and K. H. J. Buschow, Phys. Status Solidi B 57, 701 (1973).

    Article  ADS  Google Scholar 

  7. R. H. Taylor and B. R. Coles, J. Phys. F: Metal Phys. 5, 121 (1975).

    Article  ADS  Google Scholar 

  8. Y. Takahashi, K. Ohshima, F. Okamura, S. Otani, and T. Tanaka, J. Phys. Soc. Jpn. 68, 2304 (1999).

    Article  ADS  Google Scholar 

  9. K. Iwasa, R. Igarashi, K. Saito, C. Laulhé, T. Orihara, S. Kunii, K. Kuwahara, H. Nakao, Y. Murakami, F. Iga, M. Sera, S. Tsutsui, H. Uchiyama, and A. Q. R. Baron, Phys. Rev. B 84, 214308 (2011).

    Article  ADS  Google Scholar 

  10. M. Amara, S. E. Luca, R.-M. Galéra, F. Givord, C. Detlefs, and S. Kunii, Phys. Rev. B 72, 064447 (2005).

    Article  ADS  Google Scholar 

  11. S. Luca, M. Amara, R.-M. Galéra, F. Givord, S. Granovsky, O. Isnard, and B. Beuneu, Phys. B (Amsterdam, Neth.) 350, e39 (2004).

    Article  Google Scholar 

  12. K. Kuwahara, S. Sugiyama, K. Iwasa, M. Kohgi, M. Nakamura, and S. Kunii, Appl. Phys. A 74, S302 (2002).

    Article  Google Scholar 

  13. M. Anisimov, V. Glushkova, A. Bogach, S. Demishev, N. Samarin, A. Samarin, N. Shitsevalova, A. Levchenko, V. Filippov, S. Gabani, K. Flachbart, and N. Sluchanko, Acta. Phys. Polon. A 131, 973 (2017).

    Article  Google Scholar 

  14. A. N. Samarin, A. V. Semeno, M. I. Gilmanov, V. V. Glushkov, I. I. Lobanova, N. A. Samarin, N.E. Sluchanko, I. I. Sannikov, N. M. Chubova, V. A. Dyadkin, S. V. Grigoriev, and S. V. Demishev, Phys. Proc. 71, 337 (2015).

    Article  ADS  Google Scholar 

  15. S. V. Demishev, A. V. Semeno, A. V. Bogach, Yu. B. Paderno, N. Yu. Shitsevalova, and N. E. Sluchanko, J. Magn. Magn. Mater. 300, E534 (2006).

    Article  ADS  Google Scholar 

  16. A. V. Semeno, V. V. Glushkov, A. V. Bogach, N. E. Sluchanko, A. V. Dukhnenko, V. B. Filipov, N. Yu. Shitsevalova, and S. V. Demishev, Phys. Rev. B 79, 014423 (2009).

    Article  ADS  Google Scholar 

  17. S. V. Demishev, A. V. Semeno, A. V. Bogach, N. A. Samarin, T. V. Ishchenko, V. B. Filipov, N. Yu. Shitsevalova, and N. E. Sluchanko, Phys. Rev. B 80, 245106 (2009).

    Article  ADS  Google Scholar 

  18. S. V. Demishev, A. V. Semeno, A. V. Bogach, V. V. Glushkov, N. E. Sluchanko, N. A. Samarin, and A. L. Chernobrovkin, JETP Lett. 93, 213 (2011).

    Article  ADS  Google Scholar 

  19. M. Reiffers, J. Šebek, E. Šantavá, G. Pristáš, and S. Kunii, Phys. Status Solidi B 243, 313 (2006).

    Article  ADS  Google Scholar 

  20. H. Nazaki, T. Tanaka, and Y. Ishizawa, J. Phys. C: Solid State Phys. 13, 2751 (1980).

    Article  ADS  Google Scholar 

  21. A. Abragam and B. Bleaney, EPR of Transition Ions (Clarendon, Oxford, 1970).

    Google Scholar 

  22. R. R. Urbano, C. Rettori, G. E. Barberis, M. Torelli, A. Bianchi, Z. Fisk, P. G. Pagliuso, A. Malinowski, M. F. Hundley, J. L. Sarrao, and S. B. Oseroff, Phys. Rev. B 65, 180407(R) (2002).

    Article  ADS  Google Scholar 

  23. G. Schwab, Phys. Status Solidi B 68, 359 (1975).

    Article  ADS  Google Scholar 

  24. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, Boca Raton, 1996).

    Google Scholar 

  25. S. Kiyohiro, K. Yukio, K. Satoru, K. Tadao, and D. Muneyuki, J. Phys. Soc. Jpn. 57, 1762 (1988).

    Article  Google Scholar 

  26. A. Szyczewski, S. Lis, Z. Kruczynski, J. Pietrzak, S. But, and M. Elbanowski, Acta. Phys. Polon. A 90, 345 (1996).

    Article  Google Scholar 

  27. R. H. Taylor and B. R. Coles, J. Phys. F: Met. Phys. 4, 303 (1974).

    Article  ADS  Google Scholar 

  28. M. Zomack, K. Baberschke, and S. E. Barnes, Phys. Rev. B 27, 4135 (1983).

    Article  ADS  Google Scholar 

  29. K. Okuda, H. Hata, and M. Date, J. Phys. Soc. Jpn. 33, 1574 (1972).

    Article  ADS  Google Scholar 

  30. C. Y. Huang, J. Magn. Magn. Mater. 51, 1 (1985).

    Article  ADS  Google Scholar 

  31. M. Oshikawa and I. Affleck, Phys. Rev. Lett. 82, 5136 (1999).

    Article  ADS  Google Scholar 

  32. S. V. Demishev, Y. Inagaki, H. Ohta, S. Okubo, Y. Oshima, A. A. Pronin, N. A. Samarin, A. V. Semeno, and N. E. Sluchanko, Europhys. Lett. 63, 446 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Semeno.

Additional information

Original Russian Text © A.V. Semeno, M.I. Gil’manov, N.E. Sluchanko, N.Yu. Shitsevalova, V.B. Filipov, S.V. Demishev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 4, pp. 243–248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semeno, A.V., Gil’manov, M.I., Sluchanko, N.E. et al. Antiferromagnetic Resonance in GdB6. Jetp Lett. 108, 237–242 (2018). https://doi.org/10.1134/S0021364018160087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018160087

Navigation