Advertisement

JETP Letters

, Volume 108, Issue 2, pp 102–105 | Cite as

On the Diffuse Structure of the Toluene–Water Interface

  • A. M. Tikhonov
Condensed Matter

Abstract

The electric density profile along the normal to the phase interface between aromatic hydrocarbon toluene and water has been studied by X-ray reflectometry using synchrotron radiation. According to the experimental data, the width of the interface under normal conditions is (3.9 ± 0.1) Å. This value is much larger than a theoretical value of (5.7 ± 0.2) Å predicted by the theory of capillary waves with an interphase tension of (36.0 ± 0.1) mN/m. The observed broadening of the interface is attributed to its own diffuse near-surface structure with a width no less than Å, which is about the value previously discussed for (high-molecular-weight saturated hydrocarbon–water) and (1,2-dichloroethane–water) interfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Benjamin, Science (Washington, DC, U. S.) 261, 1558 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Henderson and W. Schmickler, J. Chem. Soc., Faraday Trans. 92, 3839 (1996).CrossRefGoogle Scholar
  3. 3.
    D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Walker, M. G. Brown, C. L. McFeari, and G. L. Richmond, J. Phys. Chem. B 108, 2111 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Zarkar, V. Pauchard, U. Farooq, A. Couzis, and S. Banerjee, Langmuir 31, 4878 (2015).CrossRefGoogle Scholar
  6. 6.
    A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).CrossRefGoogle Scholar
  7. 7.
    A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).CrossRefGoogle Scholar
  8. 8.
    A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).Google Scholar
  9. 9.
    L. L. Schramm and L. G. Hepler, Can. J. Chem. 72, 1915 (1994).CrossRefGoogle Scholar
  10. 10.
    J. Saien and S. Akbari, J. Chem. Eng. Data 51, 1832 (2006).CrossRefGoogle Scholar
  11. 11.
    A. M. Tikhonov, JETP Lett. 104, 309 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).CrossRefGoogle Scholar
  14. 14.
    A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Colloid Interface Sci. 318, 103 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Tikhonov and M. L. Schlossman, J. Phys.:Condens. Matter 19, 375101 (2007).Google Scholar
  18. 18.
    M. L. Schlossman, M. Li, D. M. Mitrinovic, and A.M. Tikhonov, High Perform. Polym. 12, 551 (2000).CrossRefGoogle Scholar
  19. 19.
    S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispersion Sci. Technol. 27, 715 (2006).CrossRefGoogle Scholar
  20. 20.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).ADSCrossRefGoogle Scholar
  21. 21.
    E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
  27. 27.
    S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    D. M. Mitrinovic, Z. Zhang, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 103, 1779 (1999).CrossRefGoogle Scholar
  29. 29.
    G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, Electrochem. Commun. 7, 627 (2005).CrossRefGoogle Scholar
  30. 30.
    G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, M. L. Schlossman, P. Vanysek, B. Lin, M. Meron, T. Graber, and J. Gebhardt, Faraday Discuss. 129, 23 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, B. Honkimäki, and M. V. Blanko, JETP Lett. 107, 384 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    G. Avitabile and A. Tuzi, J. Polymer Sci. 21, 2379 (1983).Google Scholar
  33. 33.
    E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983).ADSCrossRefGoogle Scholar
  34. 34.
    M. L. Schlossman and A. M. Tikhonov, Ann. Rev. Phys. Chem. 59, 153 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    K. Akbarzadeh, A. Hammami, A. Kharrat, D. Zhan, S. Allenson, J. Creek, S. Kabir, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, O. C. Mullins, and T. Solbakken, Oilfield Rev. 19 (2), 22 (2007).Google Scholar
  36. 36.
    O. C. Mullins, Ann. Rev. Anal. Chem. 4, 393 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations