Skip to main content
Log in

Superconducting Qubit Systems as a Platform for Studying Effects of Nonstationary Electrodynamics in a Cavity

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been shown that superconducting qubit systems, having high tunability, can be used as a platform for the experimental study of various effects of nonstationary quantum electrodynamics in a cavity. In particular, the dynamic Lamb effect can be implemented owing to a nonadiabatic change in the effective coupling between the subsystem of qubits and a cavity. This effect is manifested in the excitation of a qubit (atom) at the change in the Lamb shift of its levels. It is remarkable that the effect of energy dissipation in such parametrically excited systems can be very nontrivial: dissipation in one of the subsystems of the hybrid system can enhance quantum effects in the other subsystem. This refers to various phenomena such as parametric qubit excitation, generation of photons from vacuum, and creation and confinement of finite entanglement of qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev. Mod. Phys. 84, 1 (2012).

    Article  ADS  Google Scholar 

  2. J. Q. You and F. Nori, Nature (London, U.K.) 474 (7353), 589 (2011).

    Article  ADS  Google Scholar 

  3. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  4. J. E. Mooij, Science (Washington, DC, U. S.) 285 (5430), 1036 (1999).

    Article  Google Scholar 

  5. D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London, U.K.) 445 (7127), 515 (2007).

    Article  ADS  Google Scholar 

  6. E. O. Kiktenko, A. K. Fedorov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev. A 91, 042312 (2015).

    Article  ADS  Google Scholar 

  7. M. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys. (Leipzig) 16, 767 (2007).

    Article  ADS  Google Scholar 

  8. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science (Washington, DC, U. S.) 327 (5967), 840 (2010).

    Article  ADS  Google Scholar 

  9. G. Oelsner, P. Macha, O. V. Astafiev, E. Il’ichev, M. Grajcar, U. Hübner, B. I. Ivanov, P. Neilinger, and H. G. Meyer, Phys. Rev. Lett. 110, 053602 (2013).

    Article  ADS  Google Scholar 

  10. R. Barends, L. Lamata, J. Kelly, et al. (Collab.), Nat. Commun. 6, 7654 (2015).

    Article  Google Scholar 

  11. A. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and J. M. Chow, Nat. Commun. 6, 6979 (2015).

    Article  Google Scholar 

  12. J. Braumüller, M. Sandberg, M. R. Vissers, A. Schneider, S. Schlör, L. Grünhaupt, H. Rotzinger, M. Marthaler, A. Lukashenko, A. Dieter, A. V. Ustinov, M. Weides, and D. P. Pappas, Appl. Phys. Lett. 108, 032601 (2016).

    Article  ADS  Google Scholar 

  13. Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  14. R. Vijay, C. Macklin, D. Slichter, S. Weber, K. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, Nature (London, U.K.) 490, 77 (2012).

    Article  ADS  Google Scholar 

  15. J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, Phys. Rev. Lett. 103, 083601 (2009).

    Article  ADS  Google Scholar 

  16. P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M. Harmans, D. P. DiVincenzo, and J. E. Mooij, Phys. Rev. Lett. 95, 257002 (2005).

    Article  ADS  Google Scholar 

  17. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 95, 060501 (2005).

    Article  ADS  Google Scholar 

  18. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and S. Haroche, Nature (London, U.K.) 477 (7362), 73 (2011).

    Article  ADS  Google Scholar 

  19. G. Romero, J. J. García-Ripoll, and E. Solano, Phys. Rev. Lett. 102, 173602 (2009).

    Article  ADS  Google Scholar 

  20. A. L. Rakhmanov, A. M. Zagoskin, S. Savel’ev, and F. Nori, Phys. Rev. B 77, 144507 (2008).

    Article  ADS  Google Scholar 

  21. P. Macha, G. Oelsner, J. M. Reiner, M. Marthaler, S. André, G. Schön, U. Huebner, H. G. 'Meyer, E. Il’ichev, and A. V. Ustinov, Nat. Commun. 5, 5146 (2014).

    Article  Google Scholar 

  22. D. Shapiro, P. Macha, A. Rubtsov, and A. Ustinov, Photonics 2, 449 (2015).

    Article  Google Scholar 

  23. I. I. Rabi, Phys. Rev. 49, 324 (1936).

    Article  ADS  Google Scholar 

  24. I. I. Rabi, Phys. Rev. 51, 652 (1937).

    Article  ADS  Google Scholar 

  25. D. S. Shapiro, A. A. Zhukov, W. V. Pogosov, and Y. E. Lozovik, Phys. Rev. A 91, 063814 (2015).

    Article  ADS  Google Scholar 

  26. A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Phys. Rev. A 93, 063845 (2016).

    Article  ADS  Google Scholar 

  27. A. Zhukov, D. Shapiro, S. Remizov, W. Pogosov, and Y. Lozovik, Phys. Lett. A 381, 592 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. V. Remizov, A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Phys. Rev. A 96, 043870 (2017).

    Article  ADS  Google Scholar 

  29. S. V. Remizov, A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, J. Low Temp. Phys. 191, 365 (2018).

    Article  ADS  Google Scholar 

  30. G. T. Moore, J. Math. Phys. 11, 2679 (1970).

    Article  ADS  Google Scholar 

  31. E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).

    Article  ADS  Google Scholar 

  32. Y. E. Lozovik, V. G. Tsvetus, and E. A. Vinogradov, Phys. Scr. 52, 184 (1995).

    Article  ADS  Google Scholar 

  33. A. Dodonov, E. Dodonov, and V. Dodonov, Phys. Lett. A 317, 378 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, Proc. Natl. Acad. Sci. U.S.A. 110, 4234 (2013).

    Article  ADS  Google Scholar 

  35. C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature (London, U.K.) 479 (7373), 376 (2011).

    Article  ADS  Google Scholar 

  36. D. J. Heinzen and M. S. Feld, Phys. Rev. Lett. 59, 2623 (1987).

    Article  ADS  Google Scholar 

  37. A. Belov, Y. E. Lozovik, and V. Pokrovskii, Sov. Phys. JETP 69, 312 (1989).

    Google Scholar 

  38. A. Fedotov, N. Narozhny, and Y. Lozovik, Phys. Lett. A 274, 213 (2000).

    Article  ADS  Google Scholar 

  39. N. B. Narozhny, A. M. Fedotov, and Y. E. Lozovik, Phys. Rev. A 64, 053807 (2001).

    Article  ADS  Google Scholar 

  40. H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).

    Article  ADS  Google Scholar 

  41. A. Fragner, M. Goppl, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, Science (Washington, DC, U. S.) 322 (5906), 1357 (2008).

    Article  ADS  Google Scholar 

  42. Y. Chen, C. Neill, P. Roushan, et al., Phys. Rev. Lett. 113, 220502 (2014).

    Article  ADS  Google Scholar 

  43. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  44. C. K. Law, Phys. Rev. Lett. 73, 1931 (1994).

    Article  ADS  Google Scholar 

  45. Y. E. Lozovik, V. G. Tsvetus, and E. A. Vinogradov, Phys. Scr. 52, 184 (1995).

    Article  ADS  Google Scholar 

  46. V. V. Dodonov, Phys. Scr. 82, 038105 (2010).

    Article  ADS  Google Scholar 

  47. D. S. Veloso and A. V. Dodonov, J. Phys. B: At. Mol. Opt. Phys. 48, 165503 (2015).

    Article  ADS  Google Scholar 

  48. V. V. Dodonov, Phys. Rev. A 58, 4147 (1998).

    Article  ADS  Google Scholar 

  49. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  50. A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Phys. Rev. A 96, 033804 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Lozovik.

Additional information

Original Russian Text © A.A. Zhukov, S.V. Remizov, W.V. Pogosov, D.S. Shapiro, Yu.E. Lozovik, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 1, pp. 62–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.A., Remizov, S.V., Pogosov, W.V. et al. Superconducting Qubit Systems as a Platform for Studying Effects of Nonstationary Electrodynamics in a Cavity. Jetp Lett. 108, 63–70 (2018). https://doi.org/10.1134/S0021364018130143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018130143

Navigation