Skip to main content
Log in

Metastability at the Loss of the Morphological Stability of the Moving Boundary of a Fluid

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The morphological stability of the interface between two fluids has been analyzed for the case where one of them displaces the other in a radial Hele-Shaw cell. The numerical calculation has shown for the first time that the critical size of instability decreases with an increase in the perturbation amplitudes of the interface and reaches a value previously determined from independent analytical calculations of the thermodynamic entropy production and the maximum entropy production principle. This reason is important evidence for the hypothesis that the entropy production makes it possible to predict nonequilibrium phase transitions in hydrodynamic systems (i.e., it is an analog of the thermodynamic potential). In other words, the entropy production determines a kinetic binodal, i.e., the interface of a metastable region in the case of perturbations with arbitrary amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sawada, B. Perrin, P. Tabeling, and P. Bouissou, Phys. Rev. A 43, 5537 (1991).

    Article  ADS  Google Scholar 

  2. S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev. E 51, 4751 (1995).

    Article  ADS  Google Scholar 

  3. E. Ben-Jacob and P. Garik, Nature (London, U.K.) 343, 523 (1990).

    Article  ADS  Google Scholar 

  4. A. Hill, Nature (London, U.K.) 348, 426 (1990).

    Article  ADS  Google Scholar 

  5. L. M. Martyushev, V. D. Seleznev, and I. E. Kuznetsova, J. Exp. Theor. Phys. 91, 132 (2000).

    Article  ADS  Google Scholar 

  6. L. M. Martyushev, I. E. Kuznetsova, and V. D. Seleznev, J. Exp. Theor. Phys. 94, 307 (2002).

    Article  ADS  Google Scholar 

  7. H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  8. Non-Equilibrium Thermodynamics and the Productionof Entropy: Life, Earth and Beyond, Ed. by A. Kleidon and R. Lorenz (Springer, Berlin, Heidelberg, 2005).

  9. L. M. Martyushev and V. D. Seleznev, Phys. Rep. 426, 1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. M. Martyushev and V. D. Seleznev, Phys. A (Amsterdam, Neth.) 410, 17 (2014).

    Article  ADS  Google Scholar 

  11. L. M. Martyushev, in Beyond the Second Law. Entropy Production and Non-Equilibrium Systems, Ed. by R.C. Dewar, C. H. Lineweaver, R. K. Niven, and K. Regenauer-Lieb (Springer, Berlin, Heidelberg, 2014), p.383.

  12. L. M. Martyushev and E. A. Chervontseva, Phys. Lett. A 373, 4206 (2009).

    Article  ADS  Google Scholar 

  13. L. M. Martyushev and E. A. Chervontseva, Eur. Phys. Lett. 90, 10012 (2010).

    Article  ADS  Google Scholar 

  14. L. Paterson, J. Fluid Mech. 113, 513 (1981).

    Article  ADS  Google Scholar 

  15. L. M. Martyushev and A. I. Birzina, J. Phys.: Condens. Matter 20, 045201 (2008).

    ADS  Google Scholar 

  16. L. M. Martyushev and A. I. Birzina, J. Phys.: Condens. Matter 20, 465102 (2008).

    ADS  Google Scholar 

  17. L. M. Martyushev, A. I. Birzina, M. S. Konovalov, and A. P. Sergeev, Phys. Rev. E 80, 066306 (2009).

    Article  ADS  Google Scholar 

  18. L. M. Martyushev and A. I. Birzina, JETP Lett. 99, 446 (2014).

    Article  ADS  Google Scholar 

  19. R. D. Bando and L. M. Martyushev, Fluid Dyn. 51, 629 (2016).

    Article  Google Scholar 

  20. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986).

    Article  ADS  Google Scholar 

  21. G. M. Homsy, Ann. Rev. Fluid Mech. 19, 271 (1987).

    Article  ADS  Google Scholar 

  22. C.-W. Park and G. M. Homsy, J. Fluid Mech. 139, 291 (1984).

    Article  ADS  Google Scholar 

  23. J. A. Miranda and M. Widom, Phys. D (Amsterdam, Neth.) 120, 315 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Martyushev.

Additional information

Original Russian Text © L.M. Martyushev, R.D. Bando, E.A. Chervontseva, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 1, pp. 35–41.

Supplementary materials are available for this article at DOI: 10.1134/S0021364018130118 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyushev, L.M., Bando, R.D. & Chervontseva, E.A. Metastability at the Loss of the Morphological Stability of the Moving Boundary of a Fluid. Jetp Lett. 108, 38–43 (2018). https://doi.org/10.1134/S0021364018130118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018130118

Navigation